Clever Geek Handbook
📜 ⬆️ ⬇️

Green function for a randomly inhomogeneous medium

Mainly, the interest in the issue of wave propagation in randomly inhomogeneous media (which, for example, is the atmosphere ) can be explained by the rapid development of satellite technologies . In this case, it becomes important to calculate the characteristics (for example, amplitude ) of the wave transmitted through the medium and establish their relations with the parameter of the inhomogeneity of the medium. An important role here is played by the Green function for a randomly inhomogeneous medium , knowing which these characteristics can be determined. The passage of light through a medium with fluctuating dielectric constant is considered.

Content

  • 1 Wave equation in a randomly inhomogeneous medium. Green function
  • 2 Green function for a medium without fluctuations in dielectric constant
  • 3 Green's function taking into account fluctuations of the dielectric constant
  • 4 Literature

The wave equation in a randomly inhomogeneous medium. Green Function

The scattering of electromagnetic waves in such a medium is determined by the system of Maxwell equations . The main distinguishing features of scattering can be considered for a simplified model: a scalar fieldu=u(r,t) {\ displaystyle u = u (\ mathbf {r}, \; t)}   . This scalar field replaces the electric and magnetic fields, thenu=u(r,t) {\ displaystyle u = u (\ mathbf {r}, \; t)}   satisfies the wave equation :

ε(r,t)c2∂2u(r,t)∂t2-Δu(r,t)=0,{\ displaystyle {\ frac {\ varepsilon (\ mathbf {r}, \; t)} {c ^ {2}}} {\ frac {\ partial ^ {2} u (\ mathbf {r}, \; t )} {\ partial t ^ {2}}} - \ Delta u (\ mathbf {r}, \; t) = 0,}  
ε(r,t)=ε0+δε(r,t),{\ displaystyle \ varepsilon (\ mathbf {r}, \; t) = \ varepsilon _ {0} + \ delta \ varepsilon (\ mathbf {r}, \; t),}  

Wherec {\ displaystyle c}   Is the speed of light in vacuum,ε0 {\ displaystyle \ varepsilon _ {0}}   - the average value of the dielectric constant ,δε(r,t) {\ displaystyle \ delta \ varepsilon (\ mathbf {r}, \; t)}   - fluctuations of the dielectric constant. Note that the average dielectric constantε0 {\ displaystyle \ varepsilon _ {0}}   It is assumed that it is independent of coordinates and time , that is, on average, the system is homogeneous and isotropic , and with good accuracy, as a first approximation, we can also assume that the unveraged dielectric constantε(r,t)=ε(r) {\ displaystyle \ varepsilon (\ mathbf {r}, \; t) = \ varepsilon (\ mathbf {r})}   independent of time. This is explained by the fact that the characteristic times responsible for the molecular processes in the system are several orders of magnitude longer than the characteristic times of the electromagnetic field ; therefore, the medium “does not have time to react” to the change in the field.

A wave equation with such a dielectric constant is actually an example of a stochastic equation , since it contains a random parameterδε(r) {\ displaystyle {\ delta \ varepsilon (\ mathbf {r})}}   . This parameter enters the equation by multiplication, that is, multiplicatively, and not by addition (additive), as in the well-known equation for Brownian motion .

Describing scattering, the field characteristics are interesting.u=u(r,t) {\ displaystyle u = u (\ mathbf {r}, \; t)}   averaged over fluctuations of the dielectric constant . These characteristics are: average field value⟨u(r,t)⟩ {\ displaystyle \ langle u (\ mathbf {r}, \; t) \ rangle}   and intensityI=I(r,t) {\ displaystyle I = I (\ mathbf {r}, \; t)}   determined by the average square of the field (averaging is also carried out over fluctuations of the dielectric constant )⟨u(r,t)2⟩ {\ displaystyle \ langle {u (\ mathbf {r}, \; t)} ^ {2} \ rangle}   . We consider the fluctuation statistics to be given, and also take into account that the average deviation from the average permittivity is zero:

⟨δε(r)⟩=0.{\ displaystyle \ langle \ delta \ varepsilon (\ mathbf {r}) \ rangle = 0.}  

The initial homogeneous wave equation always has a solution in the formu(r,t)=0 {\ displaystyle u (\ mathbf {r}, \; t) = 0}   . This is an obvious trivial decision. It is easy to show that in the absence of fluctuations, the nonzero solution is a plane monochromatic wave of the form:

u(r,t)=u0exp⁡[ik0r-iwt].{\ displaystyle u (\ mathbf {r}, \; t) = u_ {0} \ exp [i \ mathbf {k_ {0}} \ mathbf {r} -iwt].}  

Substitute this expression in the wave equation . We get:

-w2ε0c2u(r,t)+k02u(r,t)=0.{\ displaystyle - {\ frac {w ^ {2} \ varepsilon _ {0}} {c ^ {2}}} u (\ mathbf {r}, \; t) + k_ {0} ^ {2} u (\ mathbf {r}, \; t) = 0.}  

It is clear from this that the proposed solution will satisfy the equation if the frequency of a plane wavew {\ displaystyle w}   and wave vectork0 {\ displaystyle k_ {0}}   are connected by the dispersion relation :

k02=w2ε0c2.{\ displaystyle k_ {0} ^ {2} = {\ frac {w ^ {2} \ varepsilon _ {0}} {c ^ {2}}}.}  

It is clear that any linear combination of waves corresponding to the dispersion relation is also a solution to the wave equation in the absence of fluctuations of the dielectric constant.

Define the Green's functionG(r,t) {\ displaystyle G (\ mathbf {r}, \; t)}   . Let this function be a solution to the initial wave equation , to the right of which is added a monochromatic source located at the origin (source frequencyw {\ displaystyle w}   ) We believe that the source “adiabatically turned on in the infinitely distant past”, for this we supplement the right side with a factorexp⁡[αt] {\ displaystyle \ exp [\ alpha t]}   whereα {\ displaystyle \ alpha}   - small positive value. In the final expressions, we will tend it to zero. Total Green's function satisfies the equation:

ε(r)c2∂2G(r,t)∂t2-ΔG(r,t)=e-iwt+αtδ(r).{\ displaystyle {\ frac {\ varepsilon (\ mathbf {r})} {c ^ {2}}} {\ frac {\ partial ^ {2} G (\ mathbf {r}, \; t)} {\ partial t ^ {2}}} - \ Delta G (\ mathbf {r}, \; t) = e ^ {- iwt + \ alpha t} \ delta (\ mathbf {r}).}  

It is convenient to look for a solution to this equation in the formG(r,t)=e-iwt+αtG(r) {\ displaystyle G (\ mathbf {r}, \; t) = e ^ {- iwt + \ alpha t} G (\ mathbf {r})}   . Substituting this expression into the equation for the Green's function, we obtain:

ε(r)G(r)c2∂2e-iwt+αt∂t2-e-iwt+αtΔG(r)=e-iwt+αtδ(r).{\ displaystyle {\ frac {\ varepsilon (\ mathbf {r}) G (\ mathbf {r})} {c ^ {2}}} {\ frac {\ partial ^ {2} e ^ {- iwt + \ alpha t}} {\ partial t ^ {2}}} - e ^ {- iwt + \ alpha t} \ Delta G (\ mathbf {r}) = e ^ {- iwt + \ alpha t} \ delta (\ mathbf {r }).}  

From the double differentiation of the exponent in time, a multiplier will appear-(w+iα)2 {\ displaystyle - (w + i \ alpha) ^ {2}}   , then we obtain the equation for the functionG(r) {\ displaystyle G (\ mathbf {r})}   :

-ε(r)(w+iα)2c2G(r)-ΔG(r)=δ(r).{\ displaystyle {\ frac {- \ varepsilon (\ mathbf {r}) (w + i \ alpha) ^ {2}} {c ^ {2}}} G (\ mathbf {r}) - \ Delta G ( \ mathbf {r}) = \ delta (\ mathbf {r}).}  

It is necessary to solve this equation for some permittivityε(r), {\ displaystyle \ varepsilon (\ mathbf {r}),}   and then average this decision over all sorts of deviationsδε(r) {\ displaystyle \ delta \ varepsilon (\ mathbf {r})}   . But it turns out that there is no way to obtain a solution to this equation for an arbitrary dielectric constant, so the solution is sought using perturbation theory , assuming the deviationδε(r) {\ displaystyle \ delta \ varepsilon (\ mathbf {r})}   small size.

Green function for a medium without fluctuations in dielectric constant

First you need to find the Green's functionG(r,t) {\ displaystyle G (\ mathbf {r}, \; t)}   corresponding to the wave equation without dielectric permittivity deviations, i.e.ε(r)=ε0 {\ displaystyle \ varepsilon (\ mathbf {r}) = \ varepsilon _ {0}}   :

ε0c2∂2G0(r,t)∂t2-ΔG0(r,t)=e-iwt+αtδ(r).{\ displaystyle {\ frac {\ varepsilon _ {0}} {c ^ {2}}} {\ frac {\ partial ^ {2} G_ {0} (\ mathbf {r}, \; t)} {\ partial t ^ {2}}} - \ Delta G_ {0} (\ mathbf {r}, \; t) = e ^ {- iwt + \ alpha t} \ delta (\ mathbf {r}).}  (one)

Again we are looking for a solution in the formG0(r,t)=e-iwt+αtG0(r) {\ displaystyle G_ {0} (\ mathbf {r}, \; t) = e ^ {- iwt + \ alpha t} G_ {0} (\ mathbf {r})}   . ThenG0(r) {\ displaystyle G_ {0} (\ mathbf {r})}   satisfies the equation :

-k02G0(r)-ΔG0(r)=δ(r),{\ displaystyle -k_ {0} ^ {2} G_ {0} (\ mathbf {r}) - \ Delta G_ {0} (\ mathbf {r}) = \ delta (\ mathbf {r}),}  (2)

where the magnitudek0=ε0(w+iα)c {\ displaystyle k_ {0} = {\ frac {{\ sqrt {\ varepsilon _ {0}}} (w + i \ alpha)} {c}}}   . It can be seen thatk0 {\ displaystyle k_ {0}}   there is an imaginary positive part, then we need it. The equation(2) {\ displaystyle (2)}   it is convenient to solve using the Fourier transform of the form:

F(k)=∫-∞∞F(r)e-ikrdr,{\ displaystyle F (\ mathbf {k}) = \ int \ limits _ {- \ infty} ^ {\ infty} F (\ mathbf {r}) e ^ {- i \ mathbf {k} \ mathbf {r} } \, d \ mathbf {r},}  (3)
F(r)=one(2π)3∫-∞∞F(k)eikrdk,{\ displaystyle F (\ mathbf {r}) = {\ frac {1} {(2 \ pi) ^ {3}}} \ int \ limits _ {- \ infty} ^ {\ infty} F (\ mathbf { k}) e ^ {i \ mathbf {k} \ mathbf {r}} \, d \ mathbf {k},}  (four)

Expression(3) {\ displaystyle (3)}   - direct Fourier transform ,F(k) {\ displaystyle F (\ mathbf {k})}   - Fourier transform of the functionF(r) {\ displaystyle F (\ mathbf {r})}   , expression(four) {\ displaystyle (4)}   Is the inverse Fourier transform . Green function imageG0(r) {\ displaystyle G_ {0} (\ mathbf {r})}   will be denoted byG0(k) {\ displaystyle G_ {0} (\ mathbf {k})}   . Applying Fourier transforms to an equation(2) {\ displaystyle (2)}   and given thatδ {\ displaystyle \ delta}   -function is the Fourier transform of unity, we get:

(k2-k02)G0(k)=one,{\ displaystyle (k ^ {2} -k_ {0} ^ {2}) G_ {0} (\ mathbf {k}) = 1,}  (5)
G0(k)=onek2-k02.{\ displaystyle G_ {0} (\ mathbf {k}) = {\ frac {1} {k ^ {2} -k_ {0} ^ {2}}}.}  (6)

To get a functionG0(r) {\ displaystyle G_ {0} (\ mathbf {r})}   doing the inverse Fourier transformG0(k) {\ displaystyle G_ {0} (\ mathbf {k})}   :

G0(r)=one(2π)3∫-∞∞eikrk2-k02dk.{\ displaystyle G_ {0} (\ mathbf {r}) = {\ frac {1} {(2 \ pi) ^ {3}}} \ int \ limits _ {- \ infty} ^ {\ infty} {\ frac {e ^ {i \ mathbf {k} \ mathbf {r}}} {k ^ {2} -k_ {0} ^ {2}}} \, d \ mathbf {k}.}  (7)

We will calculate this integral in a spherical coordinate system by choosing the polar axis along the vectorr {\ displaystyle \ mathbf {r}}   (by the polar axis, we mean the axis from which the angle is measuredθ {\ displaystyle \ theta}   ):

G0(r)=one(2π)3∫-∞∞eikrk2-k02dk=one(2π)3∫02πdφ∫0πsin⁡θdθ∫0∞k2eikrcos⁡θk2-k02dk={\ displaystyle G_ {0} (\ mathbf {r}) = {\ frac {1} {(2 \ pi) ^ {3}}} \ int \ limits _ {- \ infty} ^ {\ infty} {\ frac {e ^ {i \ mathbf {k} \ mathbf {r}}} {k ^ {2} -k_ {0} ^ {2}}} \, d \ mathbf {k} = {\ frac {1} {(2 \ pi) ^ {3}}} \ int \ limits _ {0} ^ {2 \ pi} \, d \ varphi \ int \ limits _ {0} ^ {\ pi} \ sin \ theta \, d \ theta \ int \ limits _ {0} ^ {\ infty} k ^ {2} {\ frac {e ^ {ikr \ cos \ theta}} {k ^ {2} -k_ {0} ^ {2} }} \, dk =}  
=2π8π3∫π0dcos⁡θ∫0∞k2eikrcos⁡θk2-k02dk=onefourπ2∫0∞k2k2-k02[eikrcos⁡θikrcos⁡θ]π0dk={\ displaystyle = {\ frac {2 \ pi} {8 \ pi ^ {3}}} \ int \ limits _ {\ pi} ^ {0} \, d \ cos \ theta \ int \ limits _ {0} ^ {\ infty} k ^ {2} {\ frac {e ^ {ikr \ cos \ theta}} {k ^ {2} -k_ {0} ^ {2}}}, dk = {\ frac {1 } {4 \ pi ^ {2}}} \ int \ limits _ {0} ^ {\ infty} {\ frac {k ^ {2}} {k ^ {2} -k_ {0} ^ {2}} } {\ Bigl [} {\ frac {e ^ {ikr \ cos \ theta}} {ikr \ cos \ theta}} {\ Bigr]} _ {\ pi} ^ {0} \, dk =}  
=onefourπ2∫0∞k2k2-k02(eikrikr-e-ikrikr)dk=onefourπ2irone2∫-∞∞k(eikr-e-ikr)k2-k02dk={\ displaystyle = {\ frac {1} {4 \ pi ^ {2}}} \ int \ limits _ {0} ^ {\ infty} {\ frac {k ^ {2}} {k ^ {2} - k_ {0} ^ {2}}} {\ Bigl (} {\ frac {e ^ {ikr}} {ikr}} - {\ frac {e ^ {- ikr}} {ikr}} {\ Bigr)} \, dk = {\ frac {1} {4 \ pi ^ {2} ir}} {\ frac {1} {2}} \ int \ limits _ {- \ infty} ^ {\ infty} {\ frac { k (e ^ {ikr} -e ^ {- ikr})} {k ^ {2} -k_ {0} ^ {2}}} \, dk =}  
=one8π2ir∫-∞∞keikrk2-k02dk-one8π2ir∫-∞∞ke-ikrk2-k02dk=2πieik0r8π2ir2+2πieik0r8π2ir2=eik0rfourπr.{\ displaystyle = {\ frac {1} {8 \ pi ^ {2} ir}} \ int \ limits _ {- \ infty} ^ {\ infty} {\ frac {ke ^ {ikr}} {k ^ { 2} -k_ {0} ^ {2}}}, dk - {\ frac {1} {8 \ pi ^ {2} ir}} \ int \ limits _ {- \ infty} ^ {\ infty} { \ frac {ke ^ {- ikr}} {k ^ {2} -k_ {0} ^ {2}}}, dk = {\ frac {2 \ pi ie ^ {ik_ {0} r}} {8 \ pi ^ {2} ir2}} + {\ frac {2 \ pi ie ^ {ik_ {0} r}} {8 {\ pi} ^ {2} ir2}} = {\ frac {e ^ {i { k_ {0}} r}} {4 \ pi r}}.}  

To calculate the integral over spherical coordinates , we used the parity of the functionk(eikr-e-ikr)k2-k02 {\ displaystyle {\ frac {k (e ^ {ikr} -e ^ {- ikr})} {k ^ {2} -k_ {0} ^ {2}}}}   , as well as the last integrals were taken from the residues . For the first term, the integration loop is closed from above; in this half-plane, it attenuateseikr {\ displaystyle e ^ {ikr}}   then the deduction is taken ink=k0=ε0(w+iα)c {\ displaystyle k = k_ {0} = {\ frac {{\ sqrt {\ varepsilon _ {0}}} (w + i \ alpha)} {c}}}   . For the second term, they closed the contour in the lower half-plane, and then the residue at the pointk=-k0 {\ displaystyle k = -k_ {0}}   , it must be remembered that the circuit is circumvented clockwise, while the residue theorem uses counterclockwise circumvention. The bypass direction can be easily changed by adding a factor in the second term(-one) {\ displaystyle (-1)}   .

The final expression for the Green's function will be:

G0(r,t)=eik0r-iwt+αtfourπr.{\ displaystyle G_ {0} (\ mathbf {r}, \; t) = {\ frac {e ^ {ik_ {0} r-iwt + \ alpha t}} {4 \ pi r}}.}  

This is a diverging spherical wave . The amplitude of this wave decreases asoner {\ displaystyle {\ frac {1} {r}}}   as you move away from the source.

Green function taking into account fluctuations of the dielectric constant

Rewrite the equation

-ε(r)(w+iα)2c2G(r)-ΔG(r)=δ(r){\ displaystyle - {\ frac {\ varepsilon (\ mathbf {r}) (w + i \ alpha) ^ {2}} {c ^ {2}}} G (\ mathbf {r}) - \ Delta G ( \ mathbf {r}) = \ delta (\ mathbf {r})}  

as

(-k02-Δ)G(r)=δε(r)ε0k02G(r)+δ(r).{\ displaystyle (-k_ {0} ^ {2} - \ Delta) G (\ mathbf {r}) = {\ frac {\ delta \ varepsilon (\ mathbf {r})} {\ varepsilon _ {0}} } k_ {0} ^ {2} G (\ mathbf {r}) + \ delta (\ mathbf {r}).}  

To use the perturbation theory , in which we will considerδε(r) {\ displaystyle \ delta \ varepsilon (\ mathbf {r})}   small value, it is more convenient to go to the integral analogue of the previous equation:

G(r)=G0(r)+k02ε0∫G0(r-rone)δε(rone)G(rone)drone.{\ displaystyle G (\ mathbf {r}) = G_ {0} (\ mathbf {r}) + {\ frac {{k_ {0}} ^ {2}} {\ varepsilon _ {0}}} \ int G_ {0} (\ mathbf {r} - \ mathbf {r_ {1}}) \ delta \ varepsilon (\ mathbf {r_ {1}}) G (\ mathbf {r_ {1}}) \, dr_ {1 }.}  

Then you can easily write an iterative solution in the form of a series:

G(r)=G0(r)+k02ε0∫G0(r-rone)δε(rone)G0(rone)drone+{\ displaystyle G (\ mathbf {r}) = G_ {0} (\ mathbf {r}) + {\ frac {k_ {0} ^ {2}} {\ varepsilon _ {0}}} \ int G_ { 0} (\ mathbf {r} - \ mathbf {r_ {1}}) \ delta \ varepsilon (\ mathbf {r_ {1}}) G_ {0} (\ mathbf {r_ {1}}) \, d \ mathbf {r_ {1}} +}  
+k0fourε02∫G0(r-rone)δε(rone)∫G0(rone-r2)δε(r2)G0(r2)dronedr2+...{\ displaystyle + {\ frac {k_ {0} ^ {4}} {\ varepsilon _ {0} ^ {2}}} \ int G_ {0} (\ mathbf {r} - \ mathbf {r_ {1} }) \ delta \ varepsilon (\ mathbf {r_ {1}}) \ int G_ {0} (\ mathbf {r_ {1}} - \ mathbf {r_ {2}}) \ delta \ varepsilon (\ mathbf {r_ {2}}) G_ {0} (\ mathbf {r_ {2}}) \, d \ mathbf {r_ {1}} \, d \ mathbf {r_ {2}} + \ ldots}  

ValueG(r) {\ displaystyle G (\ mathbf {r})}   - random value. In the future, it must be averaged over all possible fluctuations of the dielectric constant. This represents the next laborious step.

Literature

  • Rytov S. M., Kravtsov Yu. A., Tatarsky V. I. Introduction to statistical radiophysics. - Part 2. Random fields. - M.: Science, 1978.
  • Ishimaru A. Propagation and scattering of waves in randomly inhomogeneous media. - T. 1, 2. - M .: Mir, 1981.
Source - https://ru.wikipedia.org/w/index.php?title=Green_function_for_characteristically heterogeneous_environment&oldid = 96637289


More articles:

  • ASAP Rocky
  • Lepol, Francois Gabriel
  • Kupin, Fedor Nikolaevich
  • Vyshgorodok (Ternopil Oblast)
  • Department of Justice of the Philippines
  • Selby John Prideox
  • Steel Pact
  • Youth Chess World Cup
  • News of higher educational institutions. Electronics
  • Libfraumilch

All articles

Clever Geek | 2019