Clever Geek Handbook
📜 ⬆️ ⬇️

Generalized Fresnel integrals

Generalized Fresnel integrals ( Boehmer integrals ) are special functions generalizing Fresnel integrals . Introduced by Peter Böhmer in 1939 [1] .

The generalized Fresnel cosine:

C⁡(x,y)=∫x∞ty-onecos⁡(t)dt{\ displaystyle \ operatorname {C} (x, y) = \ int _ {x} ^ {\ infty} t ^ {y-1} \ cos (t) \, dt} {\ displaystyle \ operatorname {C} (x, y) = \ int _ {x} ^ {\ infty} t ^ {y-1} \ cos (t) \, dt}

Generalized Fresnel sine:

S⁡(x,y)=∫x∞ty-onesin⁡(t)dt{\ displaystyle \ operatorname {S} (x, y) = \ int _ {x} ^ {\ infty} t ^ {y-1} \ sin (t) \, dt} {\ displaystyle \ operatorname {S} (x, y) = \ int _ {x} ^ {\ infty} t ^ {y-1} \ sin (t) \, dt}

Accordingly, the usual Fresnel integrals are expressed in terms of the Böhmer integrals as follows:

S⁡(y)=one2-one2π⋅S⁡(one2,y2){\ displaystyle \ operatorname {S} (y) = {\ frac {1} {2}} - {\ frac {1} {\ sqrt {2 \ pi}}} \ cdot \ operatorname {S} \ left ({ \ frac {1} {2}}, y ^ {2} \ right)} {\ displaystyle \ operatorname {S} (y) = {\ frac {1} {2}} - {\ frac {1} {\ sqrt {2 \ pi}}} \ cdot \ operatorname {S} \ left ({ \ frac {1} {2}}, y ^ {2} \ right)}
C⁡(y)=one2-one2π⋅C⁡(one2,y2){\ displaystyle \ operatorname {C} (y) = {\ frac {1} {2}} - {\ frac {1} {\ sqrt {2 \ pi}}} \ cdot \ operatorname {C} \ left ({ \ frac {1} {2}}, y ^ {2} \ right)} {\ displaystyle \ operatorname {C} (y) = {\ frac {1} {2}} - {\ frac {1} {\ sqrt {2 \ pi}}} \ cdot \ operatorname {C} \ left ({ \ frac {1} {2}}, y ^ {2} \ right)}

Also, through the generalized Fresnel integrals, we can express the integral sine and integral cosine :

Si⁡(x)=π2-S⁡(x,0){\ displaystyle \ operatorname {Si} (x) = {\ frac {\ pi} {2}} - \ operatorname {S} (x, 0)} {\ displaystyle \ operatorname {Si} (x) = {\ frac {\ pi} {2}} - \ operatorname {S} (x, 0)}
Ci⁡(x)=π2-C⁡(x,0){\ displaystyle \ operatorname {Ci} (x) = {\ frac {\ pi} {2}} - \ operatorname {C} (x, 0)} {\ displaystyle \ operatorname {Ci} (x) = {\ frac {\ pi} {2}} - \ operatorname {C} (x, 0)}

Literature

KB Oldham, JC Myland, J. Spanier. An atlas of functions . - 2nd ed. - Springer, 2008 .-- 748 p.

Notes

  1. ↑ PE Böhmer. Differenzengleichungen und bestimmte Integrale (German) . - Leipzig, KF Koehler Verlag, 1939 .-- 148 p.
Source - https://ru.wikipedia.org/w/index.php?title=Fresnel_generalized_integrals&oldid=88057237


More articles:

  • Tallone
  • Pietra di Verde
  • Chiatra
  • Human Brain
  • Skidin, Nikolay Alekseevich
  • Silvatico Matteo
  • The Battle of Rajasthan
  • Sain, Aruzhan
  • Cheyenne River
  • Progress M-46

All articles

Clever Geek | 2019