Generalized Fresnel integrals ( Boehmer integrals ) are special functions generalizing Fresnel integrals . Introduced by Peter Böhmer in 1939 [1] .
The generalized Fresnel cosine:
Generalized Fresnel sine:
Accordingly, the usual Fresnel integrals are expressed in terms of the Böhmer integrals as follows:
Also, through the generalized Fresnel integrals, we can express the integral sine and integral cosine :
Literature
KB Oldham, JC Myland, J. Spanier. An atlas of functions . - 2nd ed. - Springer, 2008 .-- 748 p.
Notes
- ↑ PE Böhmer. Differenzengleichungen und bestimmte Integrale (German) . - Leipzig, KF Koehler Verlag, 1939 .-- 148 p.