Clever Geek Handbook
📜 ⬆️ ⬇️

Asymptotic expansion

The asymptotic expansion of the function f (x) is a formal functional series such that the sum of an arbitrary finite number of members of this series approximates ( approximates ) the function f (x) in a neighborhood of some (possibly infinitely distant) limit point . The concept of an asymptotic expansion of a function and an asymptotic series was introduced by Henri Poincare in solving problems of celestial mechanics . Separate cases of asymptotic decomposition were discovered and applied as early as the 18th century. Asymptotic expansions and series play an important role in various problems of mathematics , mechanics, and physics .

Content

Definition

Let functionsφn {\ displaystyle \ varphi _ {n}}   satisfy the property:φn+one(x)=o(φn(x))(x→L)∀n∈N {\ displaystyle \ varphi _ {n + 1} (x) = o (\ varphi _ {n} (x)) \ (x \ rightarrow L) \ quad \ forall n \ in \ mathbb {N}}   for some limit pointL {\ displaystyle L}   domain of function f (x) . Function sequenceφn {\ displaystyle \ varphi _ {n}}   satisfying the indicated conditions is called an asymptotic sequence. Row:∑n=0∞anφn(x) {\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n} \ varphi _ {n} (x)}   for which the conditions are satisfied:f(x)-∑n=0N-oneanφn(x)=O(φN(x))(x→L) {\ displaystyle f (x) - \ sum _ {n = 0} ^ {N-1} a_ {n} \ varphi _ {n} (x) = O (\ varphi _ {N} (x)) \ ( x \ rightarrow L)}  

or equivalently:

f(x)-∑n=0N-oneanφn(x)=o(φN-one(x))(x→L).{\ displaystyle f (x) - \ sum _ {n = 0} ^ {N-1} a_ {n} \ varphi _ {n} (x) = o (\ varphi _ {N-1} (x)) \ (x \ rightarrow L).}  

is called the asymptotic expansion of the function f (x) or its asymptotic series. This fact is reflected:

f(x)∼∑n=0∞anφn(x)(x→L).{\ displaystyle f (x) \ sim \ sum _ {n = 0} ^ {\ infty} a_ {n} \ varphi _ {n} (x) \ (x \ rightarrow L).}  

The difference between a convergent series and an asymptotic expansion for a functionf(x) {\ displaystyle f (x)}   can be illustrated as follows: for a convergent series for any fixedx {\ displaystyle x}   the series converges in valuef(x) {\ displaystyle f (x)}   atN→∞ {\ displaystyle N \ rightarrow \ infty}   , while in the asymptotic expansion for a fixedN {\ displaystyle N}   the series converges in valuef(x) {\ displaystyle f (x)}   in the limitx→L {\ displaystyle x \ rightarrow L}   (L {\ displaystyle L}   may be infinite).

Asymptotic Erdeia decomposition

The asymptotic Erdeyi decomposition has a more general definition. Row∑n=0∞anφn(x) {\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n} \ varphi _ {n} (x)}   is called the asymptotic Erdeyi decomposition of f (x) if there exists such an asymptotic sequenceψn {\ displaystyle \ psi _ {n}}   , what

f(x)-∑n=0Nanφn(x)=o(ψN(x))(x→L).{\ displaystyle f (x) - \ sum _ {n = 0} ^ {N} a_ {n} \ varphi _ {n} (x) = o (\ psi _ {N} (x)) \ (x \ rightarrow L).}  

This fact is written as follows:

f(x)∼∑n=0∞anφn(x)(x→L){ψn(x)}.{\ displaystyle f (x) \ sim \ sum _ {n = 0} ^ {\ infty} a_ {n} \ varphi _ {n} (x) \ (x \ rightarrow L) \ quad \ {\ psi _ { n} (x) \}.}  

Such a generalized expansion has many common properties with the usual asymptotic expansion, however, the theory of such a decomposition is poorly studied, often little useful for numerical calculations, and rarely used.

Examples

  • Gamma function
exxx2πxΓ(x+one)∼one+one12x+one288x2-13951840x3-⋯(x→∞){\ displaystyle {\ frac {e ^ {x}} {x ^ {x} {\ sqrt {2 \ pi x}}}} Gamma (x + 1) \ sim 1 + {\ frac {1} {12x }} + {\ frac {1} {288x ^ {2}}} - {\ frac {139} {51840x ^ {3}}} - \ cdots \ (x \ rightarrow \ infty)}  
  • Integral exponential function
xexEone(x)∼∑n=0∞(-one)nn!xn(x→∞){\ displaystyle xe ^ {x} E_ {1} (x) \ sim \ sum _ {n = 0} ^ {\ infty} {\ frac {(-1) ^ {n} n!} {x ^ {n }}} \ (x \ rightarrow \ infty)}  
  • Riemann Zeta Function
ζ(s)∼∑n=oneN-onen-s+None-ss-one+N-s∑m=one∞B2ms2m-one¯(2m)!N2m-one{\ displaystyle \ zeta (s) \ sim \ sum _ {n = 1} ^ {N-1} n ^ {- s} + {\ frac {N ^ {1-s}} {s-1}} + N ^ {- s} \ sum _ {m = 1} ^ {\ infty} {\ frac {B_ {2m} s ^ {\ overline {2m-1}}} {(2m)! N ^ {2m-1 }}}}  
WhereB2m {\ displaystyle B_ {2m}}   - Bernoulli numbers ands2m-one¯=s(s+one)(s+2)⋯(s+2m-2) {\ displaystyle s ^ {\ overline {2m-1}} = s (s + 1) (s + 2) \ cdots (s + 2m-2)}   . This decomposition is valid for all complex s .
  • Error function
πxex2erfc(x)∼one+∑n=one∞(-one)n(2n)!n!(2x)2n.{\ displaystyle {\ sqrt {\ pi}} xe ^ {x ^ {2}} {\ rm {erfc}} (x) \ sim 1+ \ sum _ {n = 1} ^ {\ infty} (- 1 ) ^ {n} {\ frac {(2n)!} {n! (2x) ^ {2n}}}.}  
  • An example of the asymptotic expansion of Erdeyi, which is not an ordinary decomposition, is [1] :
sin⁡(x)x∼∑n=0∞n!e-(n+one)x/2n(log⁡x)n(x→∞){(log⁡x)-n}.{\ displaystyle {\ frac {\ sin (x)} {x}} \ sim \ sum _ {n = 0} ^ {\ infty} {\ frac {n! e ^ {- (n + 1) x / 2n }} {(\ log x) ^ {n}}} \ quad (x \ rightarrow \ infty) \ \ {(\ log x) ^ {- n} \}.}  

Notes

  1. ↑ Roderick Wong. Asymptotic approximations of integrals. Academic Press, London, 1989 13

Literature

  • Mathematical Encyclopedia / Ed. I.M. Vinogradova. Volume 2 - M.: Mir, 1985.
  • Erdeyi A. Asymptotic expansions / Per. from English - M., 1962
  • Bleistein, N. and Handlesman, R., Asymptotic Expansions of Integrals, Dover, New York, 1975
Source - https://ru.wikipedia.org/w/index.php?title=Asymptotic_decomposition&oldid=83906016


More articles:

  • Batrakov, Mikhail Grigorievich
  • Dukmasovo rural settlement
  • Montana State Capitol
  • Croatian Ministry of Culture
  • Hegg Peter
  • Gliese 667 C c
  • Danish Ministry of Culture
  • Kadir Kasar
  • Balkan Hypothesis
  • Pinba

All articles

Clever Geek | 2019