Clever Geek Handbook
📜 ⬆️ ⬇️

Ries Representation Theorem

The Riesz representation theorem (also the Riesz – Fréchet theorem ) is a statement of functional analysis , according to which each linear bounded functional in a Hilbert space can be represented through a scalar product with the help of some element. Named in honor of the Hungarian mathematician Frigyes Rees .

Content

Formulation

Let there be a Hilbert spaceH {\ displaystyle H}   and linear bounded functionalf∈H′ {\ displaystyle f \ in H '}   in spaceH {\ displaystyle H}   . Then there is a single element.y {\ displaystyle y}   spacesH {\ displaystyle H}   such that for arbitraryx∈H {\ displaystyle x \ in H}   performedf(x)=⟨y,x⟩ {\ displaystyle f (x) = \ langle y, x \ rangle}   . In addition, the equality holds:‖y‖=‖f‖ {\ displaystyle \ | y \ | = \ | f \ |}   .

Proof

ker⁡(f){\ displaystyle \ ker (f)}   the core of a linear functional is a vector subspaceH {\ displaystyle H}   .

Existencey {\ displaystyle y}  

If af≡0 {\ displaystyle f \ equiv 0}   it is enough to takey=0 {\ displaystyle y = 0}   . Let's pretend thatf≠0 {\ displaystyle f \ neq 0}   . Thenker⁡(f)≠H {\ displaystyle \ ker (f) \ neq H}   and therefore orthogonal complementker⁡(f)⊥ {\ displaystyle \ ker (f) ^ {\ bot}}   coresf {\ displaystyle f}   not equal{0} {\ displaystyle \ {0 \}}   . Choose an arbitrary nonzero vectorb∈ker⁡(f)⊥∖{0} {\ displaystyle b \ in \ ker (f) ^ {\ bot} \ setminus {\ big \ {} 0 {\ big \}}}   . Sety=f(b)‖b‖2b {\ displaystyle y = {\ tfrac {f (b)} {\ | b \ | ^ {2}}} b}   . We will show thatf(x)=⟨y,x⟩ {\ displaystyle f (x) = \ langle y, x \ rangle}   for allx∈H {\ displaystyle x \ in H}   . Consider a vectorpx=x-f(x)f(b)b {\ displaystyle p_ {x} = x - {\ tfrac {f (x)} {f (b)}} b}   . notice, thatf(px)=f(x)-f(x)f(b)f(b)=0 {\ displaystyle f (p_ {x}) = f (x) - {\ tfrac {f (x)} {f (b)}} f (b) = 0}   , and thus,px∈ker⁡(f) {\ displaystyle p_ {x} \ in \ ker (f)}   . Insofar asb∈ker⁡(f)⊥ {\ displaystyle b \ in \ ker (f) ^ {\ bot}}   then⟨b,px⟩=0 {\ displaystyle \ langle b, p_ {x} \ rangle = 0}   . Consequently,

⟨b,px⟩=⟨b,x-f(x)f(b) b ⟩ = ⟨ b , x ⟩ - f ( x ) f ( b ) ‖ b ‖ 2 = 0{\ displaystyle \ langle b, p_ {x} \ rangle = {\ Big \ langle} b, x- {f (x) \ over f (b)} b {\ Big \ rangle} = \ langle b, x \ rangle - {f (x) \ over f (b)} \ | b \ | ^ {2} = 0}   .

From heref(x)=⟨b,x⟩f(b)‖b‖2 {\ displaystyle f (x) = \ langle b, x \ rangle {\ tfrac {f (b)} {\ | b \ | ^ {2}}}   andf(x)=⟨y,x⟩ {\ displaystyle f (x) = \ langle y, x \ rangle}   .

Uniquenessy {\ displaystyle y}  

Let's pretend thaty {\ displaystyle y}   andz {\ displaystyle z}   itemsH {\ displaystyle H}   satisfyf(x)=⟨y,x⟩=⟨z,x⟩ {\ displaystyle f (x) = \ langle y, x \ rangle = \ langle z, x \ rangle}   .

This means that for allx∈H {\ displaystyle x \ in H}   fair equality⟨y-z,x⟩=0 {\ displaystyle \ langle yz, x \ rangle = 0}   , in particular⟨y-z,y-z⟩=‖y-z‖2=0 {\ displaystyle \ langle yz, yz \ rangle = \ | yz \ | ^ {2} = 0}   where does equality come fromy=z {\ displaystyle y = z}   .

Equality of norms

For proof‖y‖=‖f‖ {\ displaystyle \ | y \ | = \ | f \ |}   First, from the Cauchy-Bunyakovsky inequality we have:|f(x)|=|⟨y,x⟩|≤‖y‖‖x‖ {\ displaystyle | f (x) | = | \ langle y, x \ rangle | \ leq \ | y \ | \ | x \ |}   . Hence, according to the definition of the norm of a functional, we have:‖f‖≤‖y‖. {\ displaystyle \ | f \ | \ leq \ | y \ |.}   Besides,⟨y,y⟩=f(y)≤‖y‖‖f‖ {\ displaystyle \ langle y, y \ rangle = f (y) \ leq \ | y \ | \ | f \ |}   from where‖y‖≤‖f‖ {\ displaystyle \ | y \ | \ leq \ | f \ |}   . Combining the two inequalities, we get‖y‖=‖f‖ {\ displaystyle \ | y \ | = \ | f \ |}   .

See also

  • Lax-Milgram theorem

Notes

Source - https://ru.wikipedia.org/w/index.php?title=Teorema_Resus_oldid=98775130


More articles:

  • District (municipality of Chiapas)
  • LP-19
  • Kharkov Bearing Plant
  • Canadian Department of International Affairs
  • Susamyr Valley
  • Spacious (Pervomaysky district)
  • Danilovtsy (village)
  • Dukmasovo rural settlement
  • Croatian Ministry of Culture
  • Obscene vocabulary in Russian

All articles

Clever Geek | 2019