Clever Geek Handbook
📜 ⬆️ ⬇️

Bianchi differential identity

The Riemann tensor satisfies the following identity:

(one)∇iRrjks+∇jRrkis+∇kRrijs=0{\ displaystyle (1) \ qquad \ nabla _ {i} R _ {\; rjk} ^ {s} + \ nabla _ {j} R _ {\; rki} ^ {s} + \ nabla _ {k} R_ { \; rij} ^ {s} = 0} (1) \ qquad \ nabla _ {i} R _ {{\; rjk}} ^ {s} + \ nabla _ {j} R _ {{\; rki}} ^ {s} + \ nabla _ {k} R_ {{\; rij}} ^ {s} = 0

which is called the Bianchi differential identity or the second Bianchi identity in differential geometry .

Proof using a special coordinate system

On the manifold , we choose a single arbitrary pointP {\ displaystyle P} P and prove equality (1) at this point. Since the pointP {\ displaystyle P} P arbitrary, then the validity of identity (1) on the whole manifold will follow.

At the pointP {\ displaystyle P} P we can choose such a special coordinate system that all Christoffel symbols (but not their derivatives) turn to zero at the pointP {\ displaystyle P} P . Then for the covariant derivatives at the pointP {\ displaystyle P} P we have:

(2)∇iRrjks=∂iRrjks{\ displaystyle (2) \ qquad \ nabla _ {i} R _ {\; rjk} ^ {s} = \ partial _ {i} R _ {\; rjk} ^ {s}} (2)\qquad \nabla _{i}R_{{\;rjk}}^{s}=\partial _{i}R_{{\;rjk}}^{s}

Insofar as

(3)Rrjks=∂jΓkrs-∂kΓjrs+ΓjpsΓkrp-ΓkpsΓjrp{\ displaystyle (3) \ qquad R _ {\; rjk} ^ {s} = \ partial _ {j} \ Gamma _ {kr} ^ {s} - \ partial _ {k} \ Gamma _ {jr} ^ { s} + \ Gamma _ {jp} ^ {s} \ Gamma _ {kr} ^ {p} - \ Gamma _ {kp} ^ {s} \ Gamma _ {jr} ^ {p}} (3)\qquad R_{{\;rjk}}^{s}=\partial _{j}\Gamma _{{kr}}^{s}-\partial _{k}\Gamma _{{jr}}^{s}+\Gamma _{{jp}}^{s}\Gamma _{{kr}}^{p}-\Gamma _{{kp}}^{s}\Gamma _{{jr}}^{p}

then at the pointP {\ displaystyle P} P we have:

(four)∇iRrjks=∂i∂jΓkrs-∂i∂kΓjrs{\ displaystyle (4) \ qquad \ nabla _ {i} R _ {\; rjk} ^ {s} = \ partial _ {i} \ partial _ {j} \ Gamma _ {kr} ^ {s} - \ partial _ {i} \ partial _ {k} \ Gamma _ {jr} ^ {s}} (4)\qquad \nabla _{i}R_{{\;rjk}}^{s}=\partial _{i}\partial _{j}\Gamma _{{kr}}^{s}-\partial _{i}\partial _{k}\Gamma _{{jr}}^{s}

Rearranging indices in (4)ijk {\ displaystyle ijk} ijk we get two more equalities:

(five)∇jRrkis=∂j∂kΓirs-∂j∂iΓkrs{\ displaystyle (5) \ qquad \ nabla _ {j} R _ {\; rki} ^ {s} = \ partial _ {j} \ partial _ {k} \ Gamma _ {ir} ^ {s} - \ partial _ {j} \ partial _ {i} \ Gamma _ {kr} ^ {s}} (5)\qquad \nabla _{j}R_{{\;rki}}^{s}=\partial _{j}\partial _{k}\Gamma _{{ir}}^{s}-\partial _{j}\partial _{i}\Gamma _{{kr}}^{s}
(6)∇kRrijs=∂k∂iΓjrs-∂k∂jΓirs{\ displaystyle (6) \ qquad \ nabla _ {k} R _ {\; rij} ^ {s} = \ partial _ {k} \ partial _ {i} \ Gamma _ {jr} ^ {s} - \ partial _ {k} \ partial _ {j} \ Gamma _ {ir} ^ {s}} (6)\qquad \nabla _{k}R_{{\;rij}}^{s}=\partial _{k}\partial _{i}\Gamma _{{jr}}^{s}-\partial _{k}\partial _{j}\Gamma _{{ir}}^{s}

It is easy to see that with the addition of equalities (4), (5) and (6) on the left side of the equation will be the expression (1), and on the right, taking into account the commutativity of partial derivatives , all terms are mutually annihilated and we get zero.

See also

  • Algebraic identity of Bianchi
Source - https://ru.wikipedia.org/w/index.php?title=Bianchi differential_identity&oldid = 87242995


More articles:

  • Paul up Gliwis
  • Marjanovo District
  • Star Wars Day
  • Khutelush-Inshushinak
  • Parade on Red Square May 9, 1990
  • Do it
  • Koprivnichki-Ivanec
  • Martinez, Maximino
  • Battle on the duct of Chikasou
  • List of mammals listed in the Red Book of the Republic of Karelia

All articles

Clever Geek | 2019