Clever Geek Handbook
📜 ⬆️ ⬇️

Weil Differential

In mathematics, the Weyl differential integral is an operator defined on the integrable functions f of the unit circle (2π {\ displaystyle 2 \ pi} 2 \ pi - periodic) with zero mean (i.e., the integral of f over the period is 0). In other words, the function f can be expanded in a Fourier series :

f(φ)=∑n=-∞∞aneinφ{\ displaystyle f (\ varphi) = \ sum _ {n = - \ infty} ^ {\ infty} a_ {n} e ^ {in \ varphi}} {\ displaystyle f (\ varphi) = \ sum _ {n = - \ infty} ^ {\ infty} a_ {n} e ^ {in \ varphi}}

Wherea0=0 {\ displaystyle a_ {0} = 0} {\ displaystyle a_ {0} = 0} , or:

f(φ)=∑n′aneinφ{\ displaystyle f (\ varphi) = \ sum '_ {n} a_ {n} e ^ {in \ varphi}} {\ displaystyle f (\ varphi) = \ sum '_ {n} a_ {n} e ^ {in \ varphi}} ,

where is the symbol∑n′ {\ displaystyle \ sum '_ {n}} {\ displaystyle \ sum '_ {n}} denotes summation over all naturaln {\ displaystyle n} n except 0.

Weyl integral of orderα>0 {\ displaystyle \ alpha> 0} \ alpha> 0 is determined by expansion in a Fourier series as:

fα(φ)=∑n′aneinφ(in)α{\ displaystyle f ^ {\ alpha} (\ varphi) = \ sum '_ {n} {\ frac {a_ {n} e ^ {in \ varphi}} {(in) ^ {\ alpha}}}} {\ displaystyle f ^ {\ alpha} (\ varphi) = \ sum '_ {n} {\ frac {a_ {n} e ^ {in \ varphi}} {(in) ^ {\ alpha}}}} ,

and the Weil derivative of orderβ>0 {\ displaystyle \ beta> 0} {\ displaystyle \ beta> 0} defined as:

fβ(φ)=∂n∂φnfn-β(φ){\ displaystyle f _ {\ beta} (\ varphi) = {\ frac {\ partial ^ {n}} {\ partial \ varphi ^ {n}}} f_ {n- \ beta} (\ varphi)} {\ displaystyle f _ {\ beta} (\ varphi) = {\ frac {\ partial ^ {n}} {\ partial \ varphi ^ {n}}} f_ {n- \ beta} (\ varphi)} .

Thus, the Weyl differential integral is completely defined.

Conditiona0=0 {\ displaystyle a_ {0} = 0} {\ displaystyle a_ {0} = 0} necessary in these definitions, since otherwise division by 0 would occur.

This definition was introduced by Hermann Weil in 1917.

See also

  • Sobolev space

Links

  • Lizorkin, PI (2001), "Fractional integration and differentiation", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104
Source - https://ru.wikipedia.org/w/index.php?title= Weil Differential &oldid = 84094294


More articles:

  • Giray, Ismail Safa
  • Malik, Vladimir Kirillovich
  • Poly Shore is dead
  • Matukana
  • Kurochkina Mountain
  • Sri Lanka flag and emblem
  • Pealing
  • Softfoot Red-legged
  • Dark softbody
  • Malygin, Konstantin Alekseevich

All articles

Clever Geek | 2019