Clever Geek Handbook
📜 ⬆️ ⬇️

Fuzzy set

Fuzzy set (sometimes blurry [1] , vague [2] , foggy [3] , furry [4] ) is a concept introduced by Lotfi Zadeh in 1965 in the article “Fuzzy Sets” in the journal , in which expanded the classical concept of a set , assuming that the characteristic function of the set (called the Zade function of membership for a fuzzy set) can take any values ​​in the interval[0,one] {\ displaystyle [0,1]} [0, 1] , not just the values0 {\ displaystyle 0} {\ displaystyle 0} orone {\ displaystyle 1} one . It is the basic concept of fuzzy logic .

Definition

Under the fuzzy setA {\ displaystyle A} A the set of ordered pairs made up of elements is understoodx {\ displaystyle x} x universal setX {\ displaystyle X} X and corresponding degrees of affiliationμA(x) {\ displaystyle \ mu _ {A} (x)} \mu _{A}(x) :

A={(x,μA(x))∣x∈X}{\ displaystyle A = \ {(x, \ mu _ {A} (x)) \ mid x \ in X \}} A=\{(x,\mu _{A}(x))\mid x\in X\} ,

moreoverμA(x) {\ displaystyle \ mu _ {A} (x)} \mu _{A}(x) - membership function (generalization of the concept of a characteristic function of ordinary clear sets), indicating the degree to which an elementx {\ displaystyle x} x belongs to a fuzzy setA {\ displaystyle A} A . FunctionμA(x) {\ displaystyle \ mu _ {A} (x) \} \mu _{A}(x)\ takes values ​​in some linearly ordered setM {\ displaystyle M} M . Lots ofM {\ displaystyle M} M called many accessories , often asM {\ displaystyle M} M segment is selected[0,one] {\ displaystyle [0,1]} [0, 1] . If aM={0,one} {\ displaystyle M = \ {0,1 \} \} M=\{0,1\}\ (that is, consists of only two elements), then the fuzzy set can be considered as an ordinary clear set.

Basic Definitions

Let beA {\ displaystyle A} A fuzzy set with elements from the universal setX {\ displaystyle X \} X\ and many accessoriesM=[0,one] {\ displaystyle M = [0,1]} M=[0,1] . Then:

  • carrier ( support ) of a fuzzy setsupp⁡A {\ displaystyle \ operatorname {supp} A} {\displaystyle \operatorname {supp} A} called set{x∣x∈X,μA(x)>0} {\ displaystyle \ {x \ mid x \ in X, \ mu _ {A} (x)> 0 \}} \{x\mid x\in X,\mu _{A}(x)>0\} ;
  • valuesupx∈XμA(x) {\ displaystyle \ sup _ {x \ in X} \ mu _ {A} (x)} \sup _{{x\in X}}\mu _{A}(x) called the height of a fuzzy setA {\ displaystyle A \} A\ . Fuzzy setA {\ displaystyle A \} A\ ok if its height is equalone {\ displaystyle 1 \} 1\ . If the height is strictly lessone {\ displaystyle 1 \} 1\ , a fuzzy set is called subnormal ;
  • a fuzzy set is empty if∀x∈X:μA(x)=0 {\ displaystyle \ forall x \ in X: \ mu _ {A} (x) = 0} \forall x\in X:\mu _{A}(x)=0 . A non-empty subnormal fuzzy set can be normalized by the formula
    μA′(x)=μA(x)supμA(x){\ displaystyle \ mu '_ {A} (x) = {\ frac {\ mu _ {A} (x)} {\ sup \ mu _ {A} (x)}}} \mu '_{A}(x)={\frac  {\mu _{A}(x)}{\sup \mu _{A}(x)}} ;
  • a fuzzy set is unimodal ifμA(x)=one {\ displaystyle \ mu _ {A} (x) = 1 \} \mu _{A}(x)=1\ only on onex {\ displaystyle x \} x\ ofX {\ displaystyle X \} X\ ;
  • the elementsx∈X {\ displaystyle x \ in X} x\in X for whichμA(x)=0,five {\ displaystyle \ mu _ {A} (x) = 0 {,} 5} {\displaystyle \mu _{A}(x)=0{,}5} are called transition points of a fuzzy setA {\ displaystyle A \} A\ .

Comparison of fuzzy sets

Let beA {\ displaystyle A} A andB {\ displaystyle B} B fuzzy sets defined on a universal setX {\ displaystyle X} X .

  • A{\ displaystyle A}   contained inB {\ displaystyle B}   if for any element ofX {\ displaystyle X}   its membership functionA {\ displaystyle A}   will take a value less than or equal to the membership functionB {\ displaystyle B}   :
    A⊂B⇔∀x∈X:μA(x)⩽μB(x){\ displaystyle A \ subset B \ Leftrightarrow \ forall x \ in X: \ mu _ {A} (x) \ leqslant \ mu _ {B} (x)}   .
  • In case the conditionμA(x)⩽μB(x) {\ displaystyle \ mu _ {A} (x) \ leqslant \ mu _ {B} (x)}   not for everyonex∈X {\ displaystyle x \ in X}   , talk about the degree of inclusion of the fuzzy setA {\ displaystyle A}   atB {\ displaystyle B}   , which is defined as follows:
    l(A⊂B)=minx∈TμB(x){\ displaystyle l \ left (A \ subset B \ right) = \ min _ {x \ in T} \ mu _ {B} (x)}   whereT={x∈X;μA(x)⩽μB(x),μA(x)>0} {\ displaystyle T = \ {x \ in X; \ mu _ {A} (x) \ leqslant \ mu _ {B} (x), \ mu _ {A} (x)> 0 \}}   .
  • Two sets are called equal if they are contained in each other:
    A=B⇔∀x∈X:μA(x)=μB(x){\ displaystyle A = B \ Leftrightarrow \ forall x \ in X: \ mu _ {A} (x) = \ mu _ {B} (x)}   .
  • In case the values ​​of membership functionsμA(x) {\ displaystyle \ mu _ {A} (x)}   andμB(x) {\ displaystyle \ mu _ {B} (x)}   almost equal to each other, they say about the degree of equality of fuzzy setsA {\ displaystyle A}   andB {\ displaystyle B}   , for example, in the form
    E(A=B)=one-maxx∈T|μA(x)-μB(x)|{\ displaystyle E (A = B) = 1- \ max _ {x \ in T} | \ mu _ {A} (x) - \ mu _ {B} (x) |}   whereT={x∈X;μA(x)≠μB(x)} {\ displaystyle T = \ {x \ in X; \ mu _ {A} (x) \ neq \ mu _ {B} (x) \}}   .

Properties of fuzzy sets

α{\ displaystyle \ alpha}   -section of a fuzzy setA⊆X {\ displaystyle A \ subseteq X}   denoted byAα {\ displaystyle A _ {\ alpha}}   , the following distinct set is called:

Aα={x∈X∣μA(x)⩾α}{\ displaystyle A _ {\ alpha} = \ {x \ in X \ mid \ mu _ {A} (x) \ geqslant \ alpha \}}   ,

that is, a set defined by the following characteristic function (membership function):

χAα(x)={0,μA(x)<α,one,μA(x)⩾α.{\ displaystyle \ chi _ {A _ {\ alpha}} (x) = \ left \ {{\ begin {matrix} 0, & \ mu _ {A} (x) <\ alpha, \\ 1, & \ mu _ {A} (x) \ geqslant \ alpha. \ End {matrix}} \ right.}  

Forα {\ displaystyle \ alpha}   -section of a fuzzy set is true implication:

αone<α2⇒Aαone⊃Aα2{\ displaystyle \ alpha _ {1} <\ alpha _ {2} \ Rightarrow A _ {\ alpha _ {1}} \ supset A _ {\ alpha _ {2}}}   .

Fuzzy setA⊆R {\ displaystyle A \ subseteq \ mathbf {R}}   is convex if and only if the condition is satisfied:

μA[γxone+(one-γ)x2]⩾⟨μA(xone)∧μA(x2)=min{μA(xone),μA(x2)}⟩{\ displaystyle \ mu _ {A} [\ gamma x_ {1} + (1- \ gamma) x_ {2}] \ geqslant \ langle \ mu _ {A} (x_ {1}) \ land \ mu _ { A} (x_ {2}) = \ min \ {\ mu _ {A} (x_ {1}), \ mu _ {A} (x_ {2}) \} \ rangle}  

for anyxone,x2∈R {\ displaystyle x_ {1}, x_ {2} \ in \ mathbf {R}}   andγ∈[0,one] {\ displaystyle \ gamma \ in [0,1]}   .

Fuzzy setA⊆R {\ displaystyle A \ subseteq \ mathbf {R}}   is concave if and only if the condition is satisfied:

μA[γxone+(one-γ)x2]⩽⟨μA(xone)∨μA(x2)=max{μA(xone),μA(x2)}⟩{\ displaystyle \ mu _ {A} [\ gamma x_ {1} + (1- \ gamma) x_ {2}] \ leqslant \ langle \ mu _ {A} (x_ {1}) \ lor \ mu _ { A} (x_ {2}) = \ max \ {\ mu _ {A} (x_ {1}), \ mu _ {A} (x_ {2}) \} \ rangle}  

for anyxone,x2∈R {\ displaystyle x_ {1}, x_ {2} \ in \ mathbf {R}}   andγ∈[0,one] {\ displaystyle \ gamma \ in [0,1]}   .

Fuzzy Set Operations

With many accessoriesM=[0,one] {\ displaystyle M = [0,1] \}  

  • Intersection of fuzzy setsA {\ displaystyle A}   andB {\ displaystyle B}   called a fuzzy subset with a membership function, which is a minimum of membership functionsA {\ displaystyle A}   andB {\ displaystyle B}   :
    μA∩B(x)=min(μA(x),μB(x)){\ displaystyle \ mu _ {A \ cap B} (x) = \ min (\ mu _ {A} (x), \ mu _ {B} (x))}   .
  • The product of fuzzy setsA {\ displaystyle A}   andB {\ displaystyle B}   called a fuzzy subset with membership function:
    μAB(x)=μA(x)μB(x){\ displaystyle \ mu _ {AB} (x) = \ mu _ {A} (x) \ mu _ {B} (x)}   .
  • The union of fuzzy setsA {\ displaystyle A}   andB {\ displaystyle B}   called a fuzzy subset with membership function, which is a maxim of membership functionsA {\ displaystyle A}   andB {\ displaystyle B}   :
    μA∪B(x)=max(μA(x),μB(x)){\ displaystyle \ mu _ {A \ cup B} (x) = \ max (\ mu _ {A} (x), \ mu _ {B} (x))}   .
  • Sum of fuzzy setsA {\ displaystyle A}   andB {\ displaystyle B}   called a fuzzy subset with membership function:
    μA+B(x)=μA(x)+μB(x)-μA(x)μB(x){\ displaystyle \ mu _ {A + B} (x) = \ mu _ {A} (x) + \ mu _ {B} (x) \ - \ mu _ {A} (x) \ mu _ {B } (x)}   .
  • Negation of the setA {\ displaystyle A \}   called setA¯ {\ displaystyle {\ overline {A}}}   with membership function:
    μA¯(x)=one-μA(x){\ displaystyle \ mu _ {\ overline {A}} (x) = 1- \ mu _ {A} (x)}   for eachx∈X {\ displaystyle x \ in X}   .

Alternative Representation of Operations on Fuzzy Sets

Intersection

In general, the operation of intersecting fuzzy sets is defined as follows:

μA∩B(x)=T(μA(x),μB(x)){\ displaystyle \ mu _ {A \ cap B} (x) = T (\ mu _ {A} (x), \ mu _ {B} (x))}   ,

where is the functionT {\ displaystyle T}   Is the so-called T-norm . The following are specific examples of the implementation of the T-norm :

  • μA∩B(x)=μA(x)∧μB(x)=min(μA(x),μB(x)){\ displaystyle \ mu _ {A \ cap B} (x) = \ mu _ {A} (x) \ land \ mu _ {B} (x) = \ min (\ mu _ {A} (x), \ mu _ {B} (x))}  
  • μA∩B(x)=μA(x)μB(x){\ displaystyle \ mu _ {A \ cap B} (x) = \ mu _ {A} (x) \ mu _ {B} (x)}  
  • μA∩B(x)=max{0,μA(x)+μB(x)-one}{\ displaystyle \ mu _ {A \ cap B} (x) = \ max \ {0, \ mu _ {A} (x) + \ mu _ {B} (x) -1 \}}  
  • μA∩B(x)={μA(x),μB(x)=oneμB(x),μA(x)=one0,μA(x)<one,μB(x)<one,{\ displaystyle \ mu _ {A \ cap B} (x) = \ left \ {{\ begin {matrix} \ mu _ {A} (x), & \ mu _ {B} (x) = 1 \\ \ mu _ {B} (x), & \ mu _ {A} (x) = 1 \\ 0, & \ mu _ {A} (x) <1, \ mu _ {B} (x) <1 , \ end {matrix}} \ right.}  
  • μA∩B(x)=one-min{one,[(one-μA(x))p+(one-μB(x))p]onep}{\ displaystyle \ mu _ {A \ cap B} (x) = 1- \ min \ {1, [(1- \ mu _ {A} (x)) ^ {p} + (1- \ mu _ { B} (x)) ^ {p}] ^ {1 \ over p} \}}   forp⩾one {\ displaystyle p \ geqslant 1}  

Association

In the general case, the operation of combining fuzzy sets is defined as follows:

μA∪B(x)=S(μA(x),μB(x)){\ displaystyle \ mu _ {A \ cup B} (x) = S (\ mu _ {A} (x), \ mu _ {B} (x))}   ,

where is the functionS {\ displaystyle S}   - T-conorm . The following are specific examples of the implementation of the S-norm :

  • μA∪B(x)=μA(x)∨μB(x)=max(μA(x),μB(x)){\ displaystyle \ mu _ {A \ cup B} (x) = \ mu _ {A} (x) \ lor \ mu _ {B} (x) = \ max (\ mu _ {A} (x), \ mu _ {B} (x))}  
  • μA∪B(x)=μA(x)+μB(x)-μA(x)μB(x){\ displaystyle \ mu _ {A \ cup B} (x) = \ mu _ {A} (x) + \ mu _ {B} (x) - \ mu _ {A} (x) \ mu _ {B } (x)}  
  • μA∪B(x)=min{one,μA(x)+μB(x)}{\ displaystyle \ mu _ {A \ cup B} (x) = \ min \ {1, \ mu _ {A} (x) + \ mu _ {B} (x) \}}  
  • μA∪B(x)={μA(x),μB(x)=0μB(x),μA(x)=0one,μA(x)>0,μB(x)>0{\ displaystyle \ mu _ {A \ cup B} (x) = \ left \ {{\ begin {matrix} \ mu _ {A} (x), & \ mu _ {B} (x) = 0 \\ \ mu _ {B} (x), & \ mu _ {A} (x) = 0 \\ 1, & \ mu _ {A} (x)> 0, \ mu _ {B} (x)> 0 \ end {matrix}} \ right.}  
  • μA∪B(x)=min{one,[μAp(x)+μBp(x)]onep}{\ displaystyle \ mu _ {A \ cup B} (x) = \ min \ {1, [\ mu _ {A} ^ {p} (x) + \ mu _ {B} ^ {p} (x) ] ^ {1 \ over p} \}}   forp⩾one {\ displaystyle p \ geqslant 1}  

Relation to Probability Theory

The theory of fuzzy sets in a certain sense reduces to the theory of random sets and thereby to probability theory . The basic idea is that the value of the membership functionμA(x) {\ displaystyle \ mu _ {A} (x) \}   can be considered as the probability of covering an elementx {\ displaystyle x \}   some random setB {\ displaystyle B \}   .

However, in practical application, the apparatus of the theory of fuzzy sets is usually used independently, competing with the apparatus of probability theory and applied statistics . For example, in control theory there is a direction in which fuzzy sets (fuzzy controllers) are used instead of probability theory methods to synthesize expert controllers .

Examples

Let be:

  • lots ofX={xone,x2,x3,xfour} {\ displaystyle X = \ {x_ {1}, x_ {2}, x_ {3}, x_ {4} \}}  
  • many accessoriesM=[0,one] {\ displaystyle M = [0,1]}  
  • A{\ displaystyle A}   andB {\ displaystyle B}   - two fuzzy subsetsX {\ displaystyle X}  
    • A={(xone∣0,four),(x2∣0,6),(x3∣0),(xfour∣one)}{\ displaystyle A = \ {(x_ {1} \ mid 0 {,} 4), (x_ {2} \ mid 0 {,} 6), (x_ {3} \ mid 0), (x_ {4} \ mid 1) \}}  
    • B={(xone∣0,3),(x2∣0),(x3∣0),(xfour∣0,2)}{\ displaystyle B = \ {(x_ {1} \ mid 0 {,} 3), (x_ {2} \ mid 0), (x_ {3} \ mid 0), (x_ {4} \ mid 0 { ,} 2) \}}  

Results of the main operations:

  • intersection:A∩B={(xone∣0,3),(x2∣0),(x3∣0),(xfour∣0,2)}=B {\ displaystyle {A \ cap B} = \ {(x_ {1} \ mid 0 {,} 3), (x_ {2} \ mid 0), (x_ {3} \ mid 0), (x_ {4 } \ mid 0 {,} 2) \} = {B}}  
  • Union:A∪B={(xone∣0,four),(x2∣0,6),(x3∣0),(xfour∣one)}=A {\ displaystyle {A \ cup B} = \ {(x_ {1} \ mid 0 {,} 4), (x_ {2} \ mid 0 {,} 6), (x_ {3} \ mid 0), (x_ {4} \ mid 1) \} = {A}}  

Notes

  1. ↑ Bulletin of the Academy of Sciences of the Georgian SSR . - Academy, 1974. - S. 157. - 786 p.
  2. ↑ AM Shirokov. Fundamentals of the theory of acquisition . - Science and Technology, 1987. - S. 66. - 198 p.
  3. ↑ Kozlova Natalia Nikolaevna. Color picture of the world in the language // Scientific notes of the Transbaikal State University. Series: Philology, History, Oriental Studies. - 2010. - Issue. 3 . - ISSN 2308-8753 .
  4. ↑ Chemistry and life, XXI century . - The company "Chemistry and Life", 2008. - S. 37. - 472 p.

Literature

  • Zade L. The concept of a linguistic variable and its application to making approximate decisions. - M .: Mir, 1976 .-- 166 p.
  • Kofman A. Introduction to the theory of fuzzy sets. - M .: Radio and communications, 1982.- 432 p.
  • Fuzzy sets and theory of possibilities: Recent achievements / R. R. Jager. - M .: Radio and communications, 1986.
  • Zadeh LA Fuzzy sets // Information and Control. - 1965. - T. 8 , No. 3 . - P. 338-353.
  • Orlovsky S. A. Decision-making problems with fuzzy source information. - M .: Nauka, 1981. - 208 p. - 7600 copies.
Source - https://ru.wikipedia.org/w/index.php?title= Fuzzy_set&oldid = 101358288


More articles:

  • Formichetti, Nicola
  • Agavnadzor (river)
  • Ford, Colin
  • Shutruk-Nahunt II
  • Bell, John Stewart
  • Chernyshevsky Village Council
  • Seasons (Zuev)
  • Karbas (village)
  • Central Bank of Oman
  • Jari (Khabarovsk Territory)

All articles

Clever Geek | 2019