Clever Geek Handbook
📜 ⬆️ ⬇️

Disjunctive normal form

A disjunctive normal form ( DNF ) in Boolean logic is a normal form in which a Boolean formula has the form of a disjunction of conjunctions of literals . Any Boolean formula can be reduced to DNF. [1] To do this, you can use the law of double negation , the law of de Morgan , the law of distributivity . The disjunctive normal form is convenient for the automatic proof of theorems .

Content

Examples

Formulas in DNF :

A∨B{\ displaystyle A \ lor B}  
(A∧B)∨¬A{\ displaystyle (A \ land B) \ lor \ neg A}  
(A∧B∧¬C)∨(¬D∧E∧F)∨(C∧D)∨B{\ displaystyle (A \ land B \ land \ neg C) \ lor (\ neg D \ land E \ land F) \ lor (C \ land D) \ lor B}  

Formulas not in DNF :

¬(A∨B){\ displaystyle \ neg (A \ lor B)}  
A∨(B∧(C∨D)){\ displaystyle A \ lor (B \ land (C \ lor D))}  

But the last two formulas are equivalent to the following formulas in DNF:

¬A∧¬B{\ displaystyle \ neg A \ land \ neg B}  
A∨(B∧C)∨(B∧D).{\ displaystyle A \ lor (B \ land C) \ lor (B \ land D).}  

Building DNFs

DNF Construction Algorithm

1) Get rid of all logical operations contained in the formula, replacing them with the basic ones: conjunction, disjunction, negation. This can be done using equivalent formulas:

A→B=¬A∨B{\ displaystyle A \ rightarrow B = \ neg A \ vee B}  
A↔B=(A∧B)∨(¬A∧¬B){\ displaystyle A \ leftrightarrow B = (A \ wedge B) \ vee (\ neg A \ wedge \ neg B)}  

2) Replace the negation sign relating to the entire expression with the negation signs relating to individual variable utterances based on the formulas:

¬(A∨B)=¬A∧¬B{\ displaystyle \ neg (A \ vee B) = \ neg A \ wedge \ neg B}  
¬(A∧B)=¬A∨¬B{\ displaystyle \ neg (A \ wedge B) = \ neg A \ vee \ neg B}  

3) Get rid of double negation signs.

4) Apply, if necessary, distributive properties and absorption formulas to conjunction and disjunction operations.

DNF Construction Example

We bring to the DNF formulaF=¬((X→Y)∨¬(Y→Z)) {\ displaystyle F = \ neg ((X \ rightarrow Y) \ vee \ neg (Y \ rightarrow Z))}  

Express the logical operation → through∨∧¬ {\ displaystyle \ vee \ wedge \ neg}  

F=¬((¬X∨Y)∨¬(¬Y∨Z)){\ displaystyle F = \ neg ((\ neg X \ vee Y) \ vee \ neg (\ neg Y \ vee Z))}  

In the resulting formula, we transfer the negation to the variables and reduce the double negations:

F=(¬¬X∧¬Y)∧(¬Y∨Z)=(X∧¬Y)∧(¬Y∨Z){\ displaystyle F = (\ neg \ neg X \ wedge \ neg Y) \ wedge (\ neg Y \ vee Z) = (X \ wedge \ neg Y) \ wedge (\ neg Y \ vee Z)}  

Using the law of distributivity , we obtain:

F=(X∧¬Y∧¬Y)∨(X∧¬Y∧Z){\ displaystyle F = (X \ wedge \ neg Y \ wedge \ neg Y) \ vee (X \ wedge \ neg Y \ wedge Z)}  

Using idempotency of the conjunction, we get DNF:

F=(X∧¬Y)∨(X∧¬Y∧Z){\ displaystyle F = (X \ wedge \ neg Y) \ vee (X \ wedge \ neg Y \ wedge Z)}  

k is a disjunctive normal form

A k- disjunctive normal form is a disjunctive normal form in which each conjunction contains exactly k literals .

For example, the following formula is written in 2-DNF:

(A∧B)∨(¬B∧C)∨(B∧¬C){\ displaystyle (A \ land B) \ lor (\ neg B \ land C) \ lor (B \ land \ neg C)}  

Transition from DNF to SDNF

If a variable, for example, Z, is missing in some simple conjunction, we insert the expression

Z∨¬Z=one{\ displaystyle Z \ vee \ neg Z = 1}   ,

after which we open the brackets (in this case, we do not write repeated disjoint terms, sinceZ∨Z=Z {\ displaystyle Z \ vee Z = Z}   according to the law of idempotency ). For example:

X∨¬Y¬Z=X(Y∨¬Y)(Z∨¬Z)∨(X∨¬X)¬Y¬Z={\ displaystyle X \ vee \ neg Y \ neg Z = X (Y \ vee \ neg Y) (Z \ vee \ neg Z) \ vee (X \ vee \ neg X) \ neg Y \ neg Z =}  
XYZ∨X¬YZ∨XY¬Z∨X¬Y¬Z∨X¬Y¬Z∨¬X¬Y¬Z={\ displaystyle XYZ \ vee X \ neg YZ \ vee XY \ neg Z \ vee X \ neg Y \ neg Z \ vee X \ neg Y \ neg Z \ vee \ neg X \ neg Y \ neg Z =}  
=XYZ∨X¬YZ∨XY¬Z∨X¬Y¬Z∨¬X¬Y¬Z{\ displaystyle = XYZ \ vee X \ neg YZ \ vee XY \ neg Z \ vee X \ neg Y \ neg Z \ vee \ neg X \ neg Y \ neg Z}  

Thus, from DNF received SDNF .

DNF Formal Grammar

The following formal grammar describes all the formulas reduced to DNF:

<DNF> → <conjunct>
<DNF> → <DNF> ∨ <conjunct>
<conjunct> → <literal>
<conjunct> → (<conjunct> ∧ <literal>)
<literal> → <term>
<literal> → ¬ <term>

where <term> denotes an arbitrary Boolean variable.

See also

  • Conjunctive normal form
  • Perfect Disjunctive Normal Form
  • Perfect conjunctive normal form
  • Conjunctive monomial
  • Disjunctive Monomial

Notes

  1. ↑ Pozdnyakov S.N., Rybin S.V. Discrete Math. - S. 303.

Literature

  • Yu.I. Galushkina, A.N. Maryamov: Lecture notes on discrete mathematics - 2nd ed., Rev. - M .: Iris-press, 2008 .-- 176 p. - (Higher education).

Links

  • DNF, SDNF, CNF, SKNF
  • Disjunctive Normal Form
  • Disjunctive and Conjunctive Normal Forms
  • Determination of DNF and CNF
Source - https://ru.wikipedia.org/w/index.php?title=Disjunctive_normal_form&oldid=96461202


More articles:

  • 2011 Taekwondo World Championship
  • Caming (Borough)
  • Cliburn (county, Alabama)
  • Ellwood, Robert
  • Reward System
  • Votikeevo
  • Ray Margrethe
  • Muravyov, Mikhail Nikolaevich (1845)
  • Base matrix crystal
  • Dodolev, Yuri Alekseevich

All articles

Clever Geek | 2019