Clever Geek Handbook
📜 ⬆️ ⬇️

Differential (math)

Differential (from lat. Differentia “difference, difference”) is the linear part of the increment of the function .

Content

Conventions

Usually function differentialf {\ displaystyle f}   is indicateddf {\ displaystyle df}   . Some authors prefer to labeldf {\ displaystyle {\ rm {d}} f}   direct font, wanting to emphasize that the differential is an operator .

Differential at pointx0 {\ displaystyle x_ {0}}   is indicateddx0f {\ displaystyle d_ {x_ {0}} f}   , and sometimesdfx0 {\ displaystyle df_ {x_ {0}}}   ordf[x0] {\ displaystyle df [x_ {0}]}   , anddf {\ displaystyle df}   if valuex0 {\ displaystyle x_ {0}}   clear from the context.

Accordingly, the differential value at the pointx0 {\ displaystyle x_ {0}}   fromh {\ displaystyle h}   may be denoted asdx0f(h) {\ displaystyle d_ {x_ {0}} f (h)}   , and sometimesdfx0(h) {\ displaystyle df_ {x_ {0}} (h)}   ordf[x0](h) {\ displaystyle df [x_ {0}] (h)}   , anddf(h) {\ displaystyle df (h)}   if valuex0 {\ displaystyle x_ {0}}   clear from the context.

Using the differential sign

  • The differential sign is used in the expression for the integral∫f(x)dx {\ displaystyle \ int f (x) \, dx}   . Moreover, sometimes (and not quite correctly) the differentialdx {\ displaystyle dx}   introduced as part of the definition of the integral .
  • The differential sign is also used in the Leibniz notation for the derivativef′(x0)=dfdx(x0) {\ displaystyle f '(x_ {0}) = {\ frac {df} {dx}} (x_ {0})}   . This notation is motivated by the fact that for differentials, functionsf {\ displaystyle f}   and identical functionx {\ displaystyle x}   true ratio
    dx0f=f′(x0)⋅dx0x.{\ displaystyle d_ {x_ {0}} f = f '(x_ {0}) {\ cdot} d_ {x_ {0}} x.}  

Definitions

For functions

Function differentialf:R→R {\ displaystyle f \ colon \ mathbb {R} \ to \ mathbb {R}}   at the pointx0∈R {\ displaystyle x_ {0} \ in \ mathbb {R}}   can be defined as a linear function

dx0f(h)=f′(x0)h,{\ displaystyle d_ {x_ {0}} f (h) = f '(x_ {0}) h,}  

Wheref′(x0) {\ displaystyle f '(x_ {0})}   denotes a derivativef {\ displaystyle f}   at the pointx0 {\ displaystyle x_ {0}}   , buth {\ displaystyle h}   - increment of the argument when moving fromx0 {\ displaystyle x_ {0}}   tox0+h {\ displaystyle x_ {0} + h}   .

In this waydf {\ displaystyle df}   there is a function of two argumentsdf:(x0,h)↦dx0f(h) {\ displaystyle df \ colon (x_ {0}, h) \ mapsto d_ {x_ {0}} f (h)}   .

The differential can be determined directly, that is, without involving the definition of a derivative, as a functiondx0f(h) {\ displaystyle d_ {x_ {0}} f (h)}   linearly dependent onh {\ displaystyle h}   , and for which the following relation is true

dx0f(h)=f(x0+h)-f(x0)+o(h).{\ displaystyle d_ {x_ {0}} f (h) = f (x_ {0} + h) -f (x_ {0}) + o (h).}  

For displays

Differential displayf:Rn→Rm {\ displaystyle f \ colon \ mathbb {R} ^ {n} \ to \ mathbb {R} ^ {m}}   at the pointx0∈Rn {\ displaystyle x_ {0} \ in \ mathbb {R} ^ {n}}   called a linear operatordx0f:Rn→Rm {\ displaystyle d_ {x_ {0}} f \ colon \ mathbb {R} ^ {n} \ to \ mathbb {R} ^ {m}}   such that the condition

dx0f(h)=f(x0+h)-f(x0)+o(h).{\ displaystyle d_ {x_ {0}} f (h) = f (x_ {0} + h) -f (x_ {0}) + o (h).}  

Related Definitions

  • Displayf:Rn→Rm {\ displaystyle f \ colon \ mathbb {R} ^ {n} \ to \ mathbb {R} ^ {m}}   called differentiable at the pointx0∈Rn {\ displaystyle x_ {0} \ in \ mathbb {R} ^ {n}}   if differential defineddx0f:Rn→Rm {\ displaystyle d_ {x_ {0}} f \ colon \ mathbb {R} ^ {n} \ to \ mathbb {R} ^ {m}}   .

Properties

  • Linear operator matrixdx0f {\ displaystyle d_ {x_ {0}} f}   equal to the Jacobi matrix ; its elements are partial derivativesf {\ displaystyle f}   .
    • Note that the Jacobi matrix can be defined at the point where the differential is not defined.
  • Function differentialf {\ displaystyle f}   connected with its gradient∇f {\ displaystyle \ nabla f}   the following defining relation
    dx0f(h)=⟨(∇f)(x0),h⟩{\ displaystyle d_ {x_ {0}} f (h) = \ langle (\ nabla f) (x_ {0}), h \ rangle}  

History

The term "differential" is introduced by Leibniz . Originallydx {\ displaystyle dx}   used to mean " infinitesimal " - a quantity that is less than any finite quantity and yet non-zero. This view was inconvenient in most branches of mathematics, with the exception of non-standard analysis .

Variations and generalizations

The concept of differential contains more than just the differential of a function or display. It can be generalized by obtaining various important objects in functional analysis, differential geometry, measure theory, non-standard analysis, algebraic geometry, and so on.

  • Differential (differential geometry)
  • Higher Order Differentials
  • Ito differential
  • External differential
  • Peano derivative
  • Frechet derivative

Literature

  • G. M. Fichtengolts “The course of differential and integral calculus”
Source - https://ru.wikipedia.org/w/index.php?title=Differential_(mathematics)&oldid=101398312


More articles:

  • Dreams of an idiot
  • Zubkovsky, Nikolai Alexandrovich
  • Marley (Nor)
  • Kokopelli (album)
  • Hong Kong Monetary Authority
  • Dreviceer See
  • Buckingham Potential
  • Husid, Juan Jose
  • Marquis Who's Who
  • Mirsky, Lev Filippovich

All articles

Clever Geek | 2019