Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Internal resistance

Bipolar and its equivalent circuit

The internal resistance of a two - terminal device is the impedance in the equivalent circuit of a two-terminal device, consisting of a voltage and impedance generator connected in series (see figure). The concept is used in circuit theory when replacing a real source with ideal elements, that is, when moving to an equivalent circuit.

Content

Introduction

The need to introduce the term can be illustrated by the following example. Compare two chemical DC sources with the same voltage:

  • Car lead-acid battery with a voltage of 12 volts and a capacity of 55 Ah .
  • Battery of 8 galvanic cells , for example, size AA, connected in series. The total voltage of such a battery is also 12 volts, the capacity is much less - about 1 Ah.

Despite the same voltage, these sources differ significantly when working at the same load. So, a car battery is capable of delivering a large current to the load (the car engine starts up from the battery, while the starter consumes a current of about 250 A ), and the starter does not rotate from the battery of elements, since the voltage of the battery when connected to the starter terminals drops to a fraction of a volt . It's not about the relatively small electrical capacity of the batteries: the energy stored in it and a charge of one ampere hour would be enough to rotate the starter for 14 seconds (at a current of 250 A).

In accordance with Ohm's law, in sources with the same voltage, the current in the same load must also be the same. In the given example, this is not fulfilled because the statement is true only for ideal sources of EMF ; real sources, to one degree or another, differ from ideal sources. To describe the degree of difference between real sources and ideal sources, the concept of internal resistance is used .

Equivalent active two-terminal circuit

Real active two-terminal circuits are well described mathematically, if they are considered as an equivalent circuit consisting of a voltage and resistance generator (in general, an impedance ) connected in series (see figure). The voltage generator is actually the energy source located in this two-terminal network. An ideal generator could give an arbitrarily large power and current to the load. However, the resistance connected in series with the generator limits the power that this two-terminal can give to the load. This equivalent resistance is called internal resistance . It is only a parameter of the abstract two-terminal model, that is, there is usually no physical β€œresistor” as an electronic component inside two-terminal devices.

Formally, in real galvanic cells, this internal resistance can be identified physically. This is the total resistance of the positive rod (carbon, steel), the body itself (zinc and nickel), as well as the electrolyte (salt) and the hydrogen absorber (in salt elements). All these materials, as well as the interface between them, have a finite resistance other than zero.

In other sources, this ohmic resistance is due to the resistance of the windings and contacts, which is connected in series with the internal resistance of the source itself and reduce the characteristics of voltage sources.

Contact potential differences have a different nature of the occurrence of voltage and are non-ohmic, that is, here the energy costs go to the work function of the charge carriers.

Resistance and internal resistance

The main characteristic of an abstract bipolar is its internal resistance (or, otherwise, impedance [1] ). However, it is not always possible to describe a bipolar by resistance alone. The fact is that the term resistance is applicable only to purely passive elements, that is, not containing energy sources. If the two-terminal network contains an energy source, then the concept of β€œresistance” is simply not applicable to it, since Ohm’s law in the formulation U = I Β· r does not hold [2] .

Thus, for dvukhpolosnykh containing sources (that is , voltage generators and current generators ) it is necessary to talk about the internal resistance (or impedance). If the two-terminal network does not contain sources [3] , then β€œ internal resistance” for such a two-terminal network means the same as simply β€œresistance”.

Related Terms

If an input and / or output (a pair of electrical contacts) can be distinguished in any system, the following terms are often used:

  • Input resistance , often input impedance , is the internal resistance exhibited by this pair of contacts as a two-terminal device, which is the input of the system [4]
  • The output impedance , often the output impedance , is the internal resistance exhibited by this pair of contacts as a two-terminal device, which is the system output .

Physical Principles

Despite the fact that in the equivalent circuit the internal resistance is presented as one passive element (moreover, the active resistance , that is, the resistor is necessarily present in it), the internal resistance is not necessarily concentrated in any one element. The bipolar only behaves externally as if it has a concentrated internal impedance and a voltage generator. In reality, internal resistance is an external manifestation of a combination of physical effects:

  • If in a two-terminal network there is only an energy source without any electrical circuit (for example, a galvanic cell ), then the internal resistance is purely active (in low-frequency circuits), and it is due to physical effects that do not allow the power given by this source to the load, exceed a certain limit. The simplest example of such an effect is the non-zero resistance of the conductors of an electrical circuit. But, as a rule, effects of non-electric nature make the greatest contribution to power limitation. So, for example, in a chemical source, the power can be limited by the contact area of ​​the substances involved in the reaction, in the generator of a hydroelectric power station - by the limited pressure of water, etc.
  • In the case of a two-terminal network containing an internal electrical circuit , the internal resistance is "dispersed" in the circuit elements (in addition to the above mechanisms in the source).

From here also follow some features of internal resistance:

  • Internal resistance cannot be removed from a two-terminal network [5]
  • The internal resistance is not a stable value: it can change when any external (load, current) and internal (heating, depletion of reagents) conditions change.

Effect of internal resistance on the properties of a two-terminal network

The effect of internal resistance is an integral property of any active two-terminal device. The main result of the presence of internal resistance is the limitation of the electric power that can be obtained in the load supplied by this two-terminal device.

If a load with a resistance R is connected to a source with an EMF [6] of the voltage generator E and active internal resistance r , then the current, voltage, and power in the load are expressed as follows:

I=Er+R,UR=Er+RR,PR=E2(r+R)2R.{\ displaystyle I = {\ frac {E} {r + R}}, \ quad U_ {R} = {\ frac {E} {r + R}} {R}, \ quad P_ {R} = {\ frac {E ^ {2}} {(r + R) ^ {2}}} {R}.}  

Finding Inner Resistance

Settlement

The concept of calculation is applicable to the circuit (but not to the real device). The calculation is given for the case of purely active internal resistance (differences in reactance will be discussed later).

Note : Strictly speaking, any real impedance (including internal resistance) has some reactive component, since any conductor has a parasitic inductance and capacitance. When we talk about purely active resistance, we do not mean a real system, but its equivalent circuit , containing only resistors : the reactivity was discarded as insignificant when switching from a real device to its equivalent circuit. If reactivity is significant when considering a real device (for example, when considering a system at high frequencies), then an equivalent circuit is made taking into account this reactivity. See the Equivalent Scheme article for more details.

Suppose there is a two-terminal device that can be described by the equivalent circuit given above. The bipolar has two unknown parameters that must be found:

  • EMF voltage generator U
  • Internal resistance r

In the general case, to determine two unknowns, it is necessary to make two measurements: measure the voltage at the output of a two-terminal network (i.e., the potential difference U out = Ο† 2 - Ο† 1 ) at two different load currents. Then unknown parameters can be found from the system of equations:

Uoutone=U-rIoneUout2=U-rI2{\ displaystyle {\ begin {matrix} U_ {out1} = U-rI_ {1} \\ U_ {out2} = U-rI_ {2} \ end {matrix}}}  (Stress)

where U out1 is the output voltage at current I 1 , U out2 is the output voltage at current I 2 . Solving the system of equations, we find the unknown unknowns:

r=Uoutone-Uout2I2-Ione,U=Uoutone+IoneUoutone-Uout2I2-Ione=Uoutone+Ioner{\ displaystyle r = {\ frac {U_ {out1} -U_ {out2}} {I_ {2} -I_ {1}}}, \ quad U = U_ {out1} + I_ {1} {\ frac {U_ {out1} -U_ {out2}} {I_ {2} -I_ {1}}} = U_ {out1} + I_ {1} r}  (General)

Usually, a simpler method is used to calculate the internal resistance: the voltage is in the no-load mode and the current is in the short-circuit mode of the two-terminal network. In this case, the system ( Voltage ) is written as follows:

Uoc=U-00=U-rIsc{\ displaystyle {\ begin {matrix} U_ {oc} = U-0 \\ 0 = U-rI_ {sc} \ end {matrix}}}  

where U oc is the output voltage in idle mode ( English open circuit ), that is, at zero load current; I sc - load current in short circuit mode ( eng. Short circuit ), that is, with a load with zero resistance. It is taken into account that the output current in idle mode and the output voltage in short circuit mode are zero. From the last equations we immediately get:

r=UocIsc,U=Uoc{\ displaystyle r = {\ frac {U_ {oc}} {I_ {sc}}}, \ quad U = U_ {oc}}  (IntrSopr)

Thus, in order to calculate the internal resistance and EMF of an equivalent generator for a two-terminal device, the electrical circuit of which is known, it is necessary:

  • Calculate the output voltage of a two-terminal in idle mode
  • Calculate the output current of a two-terminal in short circuit mode
  • Based on the obtained values, find r and U by the formula ( IntrSopr ).

Measurement

The concept of measurement applies to a real device (but not to a circuit). Direct measurement with an ohmmeter is impossible, since it is impossible to connect the probes of the device to the terminals of internal resistance. Therefore, an indirect measurement is necessary, which does not fundamentally differ from the calculation - voltage on the load is also necessary at two different current values. However, it is not always possible to use the simplified formula (2), since not every real two-terminal network allows operation in the short circuit mode.

Sometimes the following simple measurement method that does not require calculations is applied:

  • The open circuit voltage is measured.
  • As a load, a variable resistor is connected and its resistance is selected so that the voltage on it is half of the open circuit voltage.

After the described procedures, the resistance of the load resistor must be measured with an ohmmeter - it will be equal to the internal resistance of the two-terminal device.

Whatever measurement method is used, one should beware of overloading the two-terminal network with excessive current, that is, the current should not exceed the maximum permissible values ​​for this two-terminal device.

Reactive Internal Resistance

If the equivalent two-terminal circuit contains reactive elements - capacitors and / or inductors , then the calculation of reactive internal resistance is performed as well as active, but instead of resistors, complex impedances of the elements included in the circuit are taken, and instead of voltages and currents, their complex amplitudes , that is, the calculation is performed by the method of complex amplitudes .

The measurement of reactive internal resistance has some peculiarities, since it is a complex-valued function , and not a scalar value:

  • You can search for various parameters of a complex value: a module , an argument , only the real or imaginary part, as well as the complex number in its entirety. Accordingly, the measurement technique will depend on what we want to get.
  • Any of these parameters depends on the frequency. Theoretically, in order to obtain complete information about the reactive internal resistance by measuring, it is necessary to remove the dependence on the frequency, that is, take measurements at all frequencies that can be generated by the source of this two-terminal device.

Phase-zero loop resistance measurement

 
The result of measuring the resistance of the phase-zero loop in the household electrical outlet

A special case of measuring the internal resistance is the measurement of the resistance of the phase-zero loop in electrical installations. The two-terminal network in this case is a pair of electrical conductors: phase and working neutral conductors or two phase conductors. The photo shows the result of such a measurement in a 220-volt household electrical outlet:

  • active component: 0.49 ohm
  • reactive component: 0.09 ohm
  • impedance module: 0.5 ohm
  • expected short circuit current: 440 A

The device finds the internal resistance by indirect measurement by the method of voltage drop across the load resistance. This method is recommended for use in Appendix D of GOST R 50571.16-99. The method is described by the above formula ( GeneralCase ) for I 1 = 0 .

The measurement result is considered satisfactory if the expected short circuit current is large enough for reliable operation of the device that protects this circuit from overcurrent.

Application

In most cases, we should not talk about the use of internal resistance, but about taking into account its negative impact, since internal resistance is more likely a negative effect. However, in some systems, the presence of an internal resistance with a nominal value is simply necessary.

Simplification of equivalent circuits

Representation of a two-terminal network as a combination of a voltage generator and internal resistance is the simplest and often used equivalent circuit of a two-terminal device.

Source and load matching

Matching the source and load is the choice of the ratio of the load resistance and the internal resistance of the source in order to achieve the specified properties of the resulting system (as a rule, they try to achieve the maximum value of any parameter for this source). The most commonly used types of matching are:

  • Voltage matching - getting the maximum voltage in a load. For this, the load resistance should be as large as possible , at least much greater than the internal resistance of the source. In other words, the bipolar should be in idle mode. In this case, the maximum voltage attainable in the load is equal to the EMF of the voltage generator E. This type of matching is used in electronic systems when the signal carrier is voltage, and it must be transferred from the source to the load with minimal loss.
  • Current matching - getting the maximum current in the load. Для этого сопротивлСниС Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ мСньшим , ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅, ΠΌΠ½ΠΎΠ³ΠΎ мСньшС , Ρ‡Π΅ΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π΅ сопротивлСниС источника. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, Π΄Π²ΡƒΡ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ замыкания. ΠŸΡ€ΠΈ этом максимально достиТимый Π² Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅ Ρ‚ΠΎΠΊ Ρ€Π°Π²Π΅Π½ I max =E/r . ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅Ρ‚ΡΡ Π² элСктронных систСмах, ΠΊΠΎΠ³Π΄Π° носитСлСм сигнала являСтся Ρ‚ΠΎΠΊ. НапримСр, ΠΏΡ€ΠΈ съСмС сигнала с Π±Ρ‹ΡΡ‚Ρ€ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„ΠΎΡ‚ΠΎΠ΄ΠΈΠΎΠ΄Π° цСлСсообразно ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒ Ρ‚ΠΎΠΊ-напряТСниС с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π²Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ сопротивлСниСм. МалоС Π²Ρ…ΠΎΠ΄Π½ΠΎΠ΅ сопротивлСниС Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ зауТСния полосы ΠΈΠ·-Π·Π° ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚Π½ΠΎΠ³ΠΎ RC - Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° .
  • БогласованиС ΠΏΠΎ мощности β€” обСспСчиваСт ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π² Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅ (Ρ‡Ρ‚ΠΎ эквивалСнтно ΠΎΡ‚Π±ΠΎΡ€Ρƒ ΠΎΡ‚ источника) максимально Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ мощности, Ρ€Π°Π²Π½ΠΎΠΉ P max =EΒ²/(4r) [7] . Π’ цСпях постоянного Ρ‚ΠΎΠΊΠ°: сопротивлСниС Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π½ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌΡƒ ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΡŽ r источника. Π’ цСпях ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° (Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС): импСданс Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ комплСксно сопряТСнным Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌΡƒ импСдансу источника.
  • БогласованиС ΠΏΠΎ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΌΡƒ ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΡŽ β€” ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ максимального коэффициСнта Π±Π΅Π³ΡƒΡ‰Π΅ΠΉ Π²ΠΎΠ»Π½Ρ‹ Π² Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ (Π² Π‘Π’Π§ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ). Π’ΠΎ ΠΆΠ΅ самоС, Ρ‡Ρ‚ΠΎ ΠΈ согласованиС ΠΏΠΎ мощности , Π½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌ линиям. Π’ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΅ сопротивлСниС Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π½ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌΡƒ ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΡŽ r . Π’ Π‘Π’Π§ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ примСняСтся практичСски всСгда. Π§Π°Ρ‰Π΅ всСго Ρ‚Π΅Ρ€ΠΌΠΈΠ½ согласованная Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ Π² этом смыслС.

БогласованиС ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ ΠΈ мощности слСдуСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ с ΠΎΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅ΡΡ‚ΡŒ ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΈΡ‚ΡŒ источник.

ПониТСниС высоких напряТСний

Иногда ΠΊ источнику элСктропитания искусствСнно Π΄ΠΎΠ±Π°Π²Π»ΡΡŽΡ‚ внСшнСС балластноС сопротивлСниС , соСдинённоС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ с Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ (ΠΎΠ½ΠΎ суммируСтся с Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ сопротивлСниСм источника) для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ΅ ΠΎΡ‚ Π½Π΅Π³ΠΎ напряТСниС, Π»ΠΈΠ±ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ρ‚ΠΎΠΊΠ°, ΠΎΡ‚Π΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Π² Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ. Однако Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ рСзистора Π² качСствС Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ гасящий рСзистор ) Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… случаях Π½Π΅ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Π΄Ρ‘Ρ‚ ΠΊ бСсполСзному Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ мощности Π½Π° Π½Ρ‘ΠΌ [8] . Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ Ρ€Π°ΡΡ…ΠΎΠ΄ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ Π²ΠΏΡƒΡΡ‚ΡƒΡŽ ΠΈ Π½Π΅ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ охлаТдСния Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния, Π² систСмах ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ гасящиС импСдансы. На основС гасящСго кондСнсатора ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ построСн кондСнсаторный Π±Π»ΠΎΠΊ питания . Аналогично, ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ёмкостного ΠΎΡ‚Π²ΠΎΠ΄Π° ΠΎΡ‚ Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠΉ Π›Π­ΠŸ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ нСбольшиС напряТСния для питания ΠΊΠ°ΠΊΠΈΡ…-Π»ΠΈΠ±ΠΎ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… устройств. Π˜Π½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ балласт ΡˆΠΈΡ€ΠΎΠΊΠΎ примСняСтся для ограничСния Ρ‚ΠΎΠΊΠ° Π² Ρ†Π΅ΠΏΠΈ газоразрядных Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… Π»Π°ΠΌΠΏ.

ΠœΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΡˆΡƒΠΌΠ°

ΠŸΡ€ΠΈ усилСнии слабых сигналов часто Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π·Π°Π΄Π°Ρ‡Π° ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΡˆΡƒΠΌΠ°, вносимого усилитСлСм Π² сигнал. Для этого ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ°Π»ΠΎΡˆΡƒΠΌΡΡ‰ΠΈΠ΅ усилитСли , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½ΠΈΠ·ΠΊΠΎΠΎΠΌΠ½Ρ‹Π΅, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π° биполярных транзисторах, Ρ‚Π°ΠΊ ΠΈ высокоомными Π½Π° ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… транзисторах, ΠΎΠ΄Π½Π°ΠΊΠΎ спроСктированы ΠΎΠ½ΠΈ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎ наимСньший коэффициСнт ΡˆΡƒΠΌΠ° достигаСтся лишь ΠΏΡ€ΠΈ ΠΏΠΎΠ»Π½ΠΎΠΌ согласовании Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ сопротивлСния источника сигнала ΠΈ Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ сопротивлСния самого усилитСля. НапримСр, Ссли источник сигнала ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ мСньшим Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ сопротивлСниСм (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΎΠ½ с Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ сопротивлСниСм 30 Ом), Ρ‚ΠΎ слСдуСт ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ источником ΠΈ усилитСлСм ΠΏΠΎΠ²Ρ‹ΡˆΠ°ΡŽΡ‰ΠΈΠΉ трансформатор , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ повысит Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ΅ сопротивлСниС (Π° Ρ‚Π°ΠΊΠΆΠ΅ напряТСниС сигнала) Π΄ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ значСния.

Limitations

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ сопротивлСния вводится Ρ‡Π΅Ρ€Π΅Π· ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΡƒΡŽ схСму, поэтому ΠΈΠΌΠ΅ΡŽΡ‚ силу Ρ‚Π΅ ΠΆΠ΅ ограничСния , Ρ‡Ρ‚ΠΎ ΠΈ для примСнимости эквивалСнтных схСм.

Examples

ЗначСния Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ сопротивлСния ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹: Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ считаСтся ΠΌΠ°Π»Ρ‹ΠΌ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, для Π³Π°Π»ΡŒΠ²Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ элСмСнта, являСтся ΠΎΡ‡Π΅Π½ΡŒ большим для ΠΌΠΎΡ‰Π½ΠΎΠ³ΠΎ аккумулятора. НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π΄Π²ΡƒΡ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠΎΠ² ΠΈ значСния ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ сопротивлСния r . Π’Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ случаи Π΄Π²ΡƒΡ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠΎΠ² Π±Π΅Π· источников ΠΎΠ³ΠΎΠ²ΠΎΡ€Π΅Π½Ρ‹ особо.

МалоС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π΅ сопротивлСниС

  • НулСвым Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ сопротивлСниСм ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ напряТСния . Если Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π΄Π²ΡƒΡ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠΈ Π±Π΅Π· источников, Ρ‚ΠΎ свСрхпроводящСС ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ΅ соСдинСниС Ρ‚ΠΎΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠ΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π΅ сопротивлСниС (Π΄ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ‚ΠΎΠΊΠΎΠ², Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ‚Π΅Ρ€ΡŽ свСрхпроводимости). Π“Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ со свСрхпроводящСй ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΎΠΉ ΠΏΡ€ΠΈ Π½Π΅ слишком Π±ΠΎΠ»ΡŒΡˆΠΈΡ… частотах ΠΈ Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… Ρ‚ΠΎΠΊΠ°Ρ… Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π΅ сопротивлСниС, вСсьма Π±Π»ΠΈΠ·ΠΊΠΎΠ΅ ΠΊ Π½ΡƒΠ»ΡŽ (ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ импСданс ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… условиях ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚ΠΎΠΆΠ΅ довольно Π½Π΅Π²Π΅Π»ΠΈΠΊ).
  • ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Π°Ρ свинцово-кислотная стартёрная аккумуляторная батарСя ΠΈΠΌΠ΅Π΅Ρ‚ r ΠΎΠΊΠΎΠ»ΠΎ 0,01 Ом. Благодаря ΡΡ‚ΠΎΠ»ΡŒ Π½ΠΈΠ·ΠΊΠΎΠΌΡƒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌΡƒ ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΡŽ Ρ‚ΠΎΠΊ, ΠΎΡ‚Π΄Π°Π²Π°Π΅ΠΌΡ‹ΠΉ Π±Π°Ρ‚Π°Ρ€Π΅Π΅ΠΉ ΠΏΡ€ΠΈ запускС двигатСля, достигаСт 250 Π°ΠΌΠΏΠ΅Ρ€ ΠΈ Π±ΠΎΠ»Π΅Π΅ (для Π»Π΅Π³ΠΊΠΎΠ²Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ).
  • Бытовая ΡΠ΅Ρ‚ΡŒ элСктроснабТСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° Π² ΠΆΠΈΠ»Ρ‹Ρ… помСщСниях ΠΈΠΌΠ΅Π΅Ρ‚ r ΠΎΡ‚ дСсятых Π΄ΠΎΠ»Π΅ΠΉ Ом Π΄ΠΎ 1 Ом ΠΈ Π±ΠΎΠ»Π΅Π΅ (зависит ΠΎΡ‚ качСства элСктропроводки ). ВысокоС сопротивлСниС соотвСтствуСт ΠΏΠ»ΠΎΡ…ΠΎΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΊΠ΅: ΠΏΡ€ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ ΠΌΠΎΡ‰Π½Ρ‹Ρ… Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΡƒΡ‚ΡŽΠ³Π° ) напряТСниС ΠΏΠ°Π΄Π°Π΅Ρ‚, ΠΏΡ€ΠΈ этом Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ ΡΡ€ΠΊΠΎΡΡ‚ΡŒ Π»Π°ΠΌΠΏ освСщСния, ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΊ Ρ‚ΠΎΠΉ ΠΆΠ΅ Π²Π΅Ρ‚Π²ΠΈ сСти. ΠŸΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΠΎΠΆΠ°Ρ€ΠΎΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ , ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½Π° сопротивлСнии ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² выдСляСтся Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ. И Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, Π² Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ сСти с Π½ΠΈΠ·ΠΊΠΈΠΌ сопротивлСниСм напряТСниС ΠΏΠ°Π΄Π°Π΅Ρ‚ ΠΎΡ‚ допустимых Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ лишь Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ. Π’ΠΎΠΊ ΠΏΡ€ΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠΌ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠΈ Π² Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ Π±Ρ‹Ρ‚ΠΎΠ²ΠΎΠΉ элСктросСти достигаСт Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… сотСн Π°ΠΌΠΏΠ΅Ρ€.
  • Using negative feedback in electronic circuits, it is possible to artificially create sources with (under certain conditions) very low internal resistance. These properties are possessed by modern electronic voltage stabilizers . For example, an integrated voltage regulator 7805 (output voltage 5 V) has a typical output impedance of less than 0.0009 Ohm [9] . However, this does not mean at all that such a stabilizer can give a load of up to 5500 A or power up to 13 kW with proper coordination. The characteristics of the stabilizer are normalized only for the operating range of currents, that is, in this example, up to 1.5 A. If this value is exceeded, the protection will work and the stabilizer will turn off (with other protection designs, the current is limited, but not completely turned off).

Great Inner Resistance

Typically, two-terminal devices with high internal resistance are various sensors, signal sources, etc. A typical task when working with such devices is to remove a signal from them without loss due to incorrect matching. To achieve good voltage matching, the signal from such a two-terminal device must be removed by a device having an even higher input impedance (as a rule, the signal from a high-impedance source is removed using a buffer amplifier ).

  • Only the ideal current source has infinite internal resistance. If we also consider two-terminal devices without sources, then a simple open circuit (two terminals, not connected in any way) also has infinite internal resistance.
  • Condenser microphones , piezoelectric and pyroelectric sensors, as well as all other β€œ condenser-like ” devices, have reactive internal resistance, the module of which can reach [10] tens and hundreds of megaohms . Therefore, such sources require the use of a buffer amplifier to achieve voltage matching. Condenser microphones, as a rule, already contain a built-in buffer amplifier assembled on a field-effect transistor .
  • To measure the electric potentials inside living cells, electrodes are used , which are a glass capillary filled with a conductive liquid. The thickness of such a conductor may be of the order of hundreds of angstroms . Due to the extremely small thickness of the conductor, such a β€œtwo-terminal network” (a cell with attached electrodes) has an internal resistance of the order of 100 megohms. High resistance and low voltage make measuring stress within the cell a daunting task.

Negative Internal Resistance

There are two-terminal devices, the internal resistance of which has a negative value. In ordinary resistance, energy dissipation occurs, in reactance , energy is stored and then released back to the source. The peculiarity of negative resistance is that it itself is a source of energy. Therefore, negative resistance in its pure form does not occur, it can only be simulated by an electronic circuit, which necessarily contains an energy source. Negative internal resistance can be obtained in circuits by using:

  • feedback
  • elements with negative differential resistance , for example, tunnel diodes

Systems with negative resistance are potentially unstable and therefore can be used to build self-oscillators .

See also

Antenna Input Impedance

Links

  • How does the internal battery resistance affect performance? (Eng.) How the internal resistance of a battery affects its performance.
  • What is the internal resistance of a battery?

Literature

  • Zernov N.V., Karpov V.G. Theory of radio circuits. - M. - L .: Energy, 1965. - 892 p.
  • Jones M. Kh. Electronics - practical course. - M .: Technosphere, 2006 .-- 512 s. ISBN 5-94836-086-5
  • Tildon H. Glisson. Introduction to Circuit Analysis and Design. - Springer, 2011 .-- P. 768. - ISBN 9789048194421 .

Notes

  1. ↑ Impedance is a generalization of the concept of resistance for the case of reactive elements. See Electrical impedance for more details.
  2. ↑ It is incorrect to apply Ohm's law in this formulation to two-terminal networks with internal sources; it is necessary to take into account the sources: U = Ir + Ξ£U int , where Ξ£U int is the algebraic sum of the EMF of internal sources.
  3. ↑ The absence of sources is expressed in the fact that the voltage at the terminals of a two-terminal device in the absence of load is zero. This also includes the case when there are sources, but do not affect the output voltage (β€œnot connected anywhere”).
  4. ↑ Reza F., Seeley S. Modern analysis of electrical circuits Energy, M.-L., 1964, 480 p. with hell.
  5. ↑ The exception is the use of compensation stabilizers. For example, a two-terminal device containing a battery and an op-amp , in some section of the I – V characteristic, can have both arbitrarily small and negative output impedance - as long as there is enough excess energy in the battery to compensate.
  6. ↑ The same as voltage
  7. ↑ 7.6. ENERGY RELATIONS IN SINUSOIDAL CURRENT CHAINS (neopr.) . Date of treatment April 6, 2014.
  8. ↑ However, quenching resistors are widely used to limit the inrush current of DC traction motors in electric vehicles .
  9. ↑ The change in the output voltage is not more than 1.3 mV in the range of output currents 0.005 Γ· 1.5 A. In a narrower range of currents 0.25 Γ· 0.75 A, the typical output resistance is even less - 0.0003 ohms.
  10. ↑ In the operating frequency range
Source - https://ru.wikipedia.org/w/index.php?title=Internal_resistance&oldid=92018723


More articles:

  • Contract Account
  • Melukhha
  • Legislative Election in Moldova (1998)
  • Asafieva Street
  • Chapel of San Silvestro
  • Karma (Balezinsky District)
  • Oxalaia quilombensis
  • North Borneo Status Dispute
  • Lost!
  • Williams, Vesta

All articles

Clever Geek | 2019