Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Transport equation

The transport equation is a partial differential equation describing a change in a scalar quantity in space and time.

The transport equation has the form:

βˆ‚Οˆβˆ‚t+βˆ‡β‹…F=0,{\ displaystyle {\ frac {\ partial \ psi} {\ partial t}} + \ nabla \ cdot \ mathbf {F} = 0,} {\ displaystyle {\ frac {\ partial \ psi} {\ partial t}} + \ nabla \ cdot \ mathbf {F} = 0,}

Whereβˆ‡β‹… {\ displaystyle \ nabla \ cdot} {\ displaystyle \ nabla \ cdot} - divergence operator, andF {\ displaystyle \ mathbf {F}} \ mathbf {F} Is a scalar quantity flux density vectorψ {\ displaystyle \ psi} {\ displaystyle \ psi} . It is equal to the product of the quantityψ {\ displaystyle \ psi} {\ displaystyle \ psi} per flow velocity vector:F=ψu {\ displaystyle {\ mathbf {F}} = \ psi {\ mathbf {u}}} {\ displaystyle {\ mathbf {F}} = \ psi {\ mathbf {u}}} . It is often assumed that the velocity field is solenoidal, i.e.βˆ‡β‹…u=0 {\ displaystyle \ nabla \ cdot {\ mathbf {u}} = 0} {\ displaystyle \ nabla \ cdot {\ mathbf {u}} = 0} . In this case, the equation takes the form:

βˆ‚Οˆβˆ‚t+uβ‹…βˆ‡Οˆ=0.{\ displaystyle {\ frac {\ partial \ psi} {\ partial t}} + {\ mathbf {u}} \ cdot \ nabla \ psi = 0.} {\ displaystyle {\ frac {\ partial \ psi} {\ partial t}} + {\ mathbf {u}} \ cdot \ nabla \ psi = 0.}

In a one-dimensional formulation, it has the form:

βˆ‚Οˆβˆ‚t+uβˆ‚Οˆβˆ‚x=0.{\ displaystyle {\ frac {\ partial \ psi} {\ partial t}} + {u} {\ frac {\ partial \ psi} {\ partial x}} = 0.} {\ displaystyle {\ frac {\ partial \ psi} {\ partial t}} + {u} {\ frac {\ partial \ psi} {\ partial x}} = 0.}

And at a constant valueu {\ displaystyle u} u has an analytical solution:

ψ(x,t)=ψ0(x-ut),{\ displaystyle \ psi (x, t) = \ psi _ {0} (x-ut),} {\ displaystyle \ psi (x, t) = \ psi _ {0} (x-ut),}

Whereψ0 {\ displaystyle \ psi _ {0}} \ psi _ {0} Is an arbitrary smooth (differentiable) function.

See also

  • Diffusion equation
Source - https://ru.wikipedia.org/w/index.php?title=Migration equation&oldid = 100281313


More articles:

  • Free Me (Joss Stone song)
  • Louis XV Style
  • Galahad
  • Sinelnikov, Vladimir Lvovich
  • Katz, Hartmouth
  • Supporting structure
  • Leninodar
  • Armenian Theater
  • Separatism in the USA
  • Odintsovo (hockey club)

All articles

Clever Geek | 2019