Clever Geek Handbook
📜 ⬆️ ⬇️

Hardy Space

Hardy space is a special kind of functional spaces in complex analysis , an analogLp {\ displaystyle L ^ {p}} L ^ {p} -spaces from functional analysis . Named after the English mathematician Hardy .

Definition

Hardy SpaceHp {\ displaystyle \ H ^ {p}}   at0<p<∞ {\ displaystyle 0 <p <\ infty}   Is a class of holomorphic functions on an open unit disk on the complex plane , satisfying the following condition

sup0<r<one(one2π∫02π|f(reiθ)|pdθ)onep<∞.{\ displaystyle \ sup _ {0 <r <1} \ left ({\ frac {1} {2 \ pi}} \ int \ limits _ {0} ^ {2 \ pi} \ left | f (re ^ { i \ theta}) \ right | ^ {p} \; d \ theta \ right) ^ {\ frac {1} {p}} <\ infty.}  

The left side of this inequality is calledp {\ displaystyle \ p}   - the norm in Hardy space or just the Hardy norm forf {\ displaystyle \ f}   , and is denoted|f|Hp {\ displaystyle \ | f | _ {H ^ {p}}}   . As is the caseLp {\ displaystyle L ^ {p}}   -spaces, this norm is generalized to the casep=∞ {\ displaystyle p = \ infty}   as

|f|H∞=sup0<r<onesupz:|z|=r|f(z)|=supz:|z|<one|f(z)|.{\ displaystyle | f | _ {H ^ {\ infty}} \ = \ \ sup _ {0 <r <1} \ sup _ {z: \ | z | = r} | f (z) | \ = \ \ sup _ {z: \ | z | <1} | f (z) |.}  

For case0<p<q≤∞ {\ displaystyle 0 <p <q \ leq \ infty}   can show thatHq {\ displaystyle \ H ^ {q}}   is a subset of the setHp {\ displaystyle \ H ^ {p}}   .

Applications

Such spaces are used both in classical mathematical analysis and in other branches of analysis and its applications, for example, harmonic analysis , control theory (in particular, for the synthesis of robust control systems ) and dispersion theory .

See also

  • H∞-control
  • Fatou Theorem
Source - https://ru.wikipedia.org/w/index.php?title=Hardy's Space&oldid = 72878104


More articles:

  • Night Gardens
  • Zincography
  • Kane, Edward
  • Van den Abele Albin
  • M73 (Machine Gun)
  • Fleur-la-Riviere
  • IAO
  • Open GDF Suez de Bretagne 2010
  • Concord (Arkansas)
  • WASP-11 / HAT-P-10

All articles

Clever Geek | 2019