Clever Geek Handbook
📜 ⬆️ ⬇️

Interpolation by algebraic polynomials

Interpolation by the algebraic polynomials of the function f (x) on the interval [a, b] —constructs the polynomial P n (x) of degree less than or equal to n , taking f (x i ):

Pn(xi)=f(xi),i=0,one,...,n{\ displaystyle P_ {n} (x_ {i}) = f (x_ {i}), \ quad i = 0,1, ..., n} {\ displaystyle P_ {n} (x_ {i}) = f (x_ {i}), \ quad i = 0,1, ..., n}

The system of equations determining the coefficients of such a polynomial has the form

Pn(xi)=a0+aonexi+a2xi2+...+anxin=f(xi),i=0,one,...,n{\ displaystyle P_ {n} (x_ {i}) = a_ {0} + a_ {1} x_ {i} + a_ {2} x_ {i} ^ {2} + \ ldots + a_ {n} x_ { i} ^ {n} = f (x_ {i}), \ quad i = 0,1, ..., n} {\ displaystyle P_ {n} (x_ {i}) = a_ {0} + a_ {1} x_ {i} + a_ {2} x_ {i} ^ {2} + \ ldots + a_ {n} x_ { i} ^ {n} = f (x_ {i}), \ quad i = 0,1, ..., n}

Its determinant is the determinant of Vandermonde .

△=|onex0x02...x0nonexonexone2...xonen.......onexnxn2...xnn|=∏i,j=0i>jn(xi-xj){\ displaystyle \ triangle = {\ begin {vmatrix} 1 & x_ {0} & x_ {0} ^ {2} & ... & x_ {0} ^ {n} \\ 1 & x_ {1} & x_ {1} ^ {2} & ... & x_ {1} ^ {n} \\ ....... \\ 1 & x_ {n} & x_ {n} ^ {2} & ... & x_ {n} ^ {n} \ end { vmatrix}} = \ prod _ {i, j = 0 \ atop i> j} ^ {n} (x_ {i} -x_ {j})} {\ displaystyle \ triangle = {\ begin {vmatrix} 1 & x_ {0} & x_ {0} ^ {2} & ... & x_ {0} ^ {n} \\ 1 & x_ {1} & x_ {1} ^ {2} & ... & x_ {1} ^ {n} \\ ....... \\ 1 & x_ {n} & x_ {n} ^ {2} & ... & x_ {n} ^ {n} \ end { vmatrix}} = \ prod _ {i, j = 0 \ atop i> j} ^ {n} (x_ {i} -x_ {j})}

It is nonzero for any pairwise different values ​​of x i , and interpolation of the function f from its values ​​at nodes x i using the polynomial P n (x) is always possible and unique.

Content

Application

The resulting interpolation formulaf(x)≈Pn(x) {\ displaystyle f (x) \ approx P_ {n} (x)}   they are often used for approximate calculation of the values ​​of the function f for the values ​​of the argument x other than the interpolation nodes. In this case, interpolation is distinguished in the narrow sense, whenx∈[x0,xn] {\ displaystyle x \ in \ left [x_ {0}, x_ {n} \ right]}   and extrapolation whenx∈[a,b] {\ displaystyle x \ in \ left [a, b \ right]}   ,x∉[x0,xn] {\ displaystyle x \ not \ in \ left [x_ {0}, x_ {n} \ right]}  

Interpolation Problem

Let in space are givenn {\ displaystyle n}   pointsPone,P2,...,Pn {\ displaystyle P_ {1}, P_ {2}, \ dots, P_ {n}}   which in some coordinate system have radius vectorsrone,r2,...,rn {\ displaystyle \ mathbf {r} _ {1}, \ mathbf {r} _ {2}, \ dots, \ mathbf {r} _ {n}}   .

The task of interpolation is to construct a curve passing through the indicated points in the indicated order.

Problem

An infinite number of curves can be drawn through a fixed set of points; therefore, the interpolation problem does not have a unique solution.

We will build the curves in the formr(t) {\ displaystyle \ mathbf {r} (t)}   where parametert {\ displaystyle t}   changes over a certain segment[a,b] {\ displaystyle [a, b]}   :a≤t≤b {\ displaystyle a \ leq t \ leq b}   . We introduce on the segment[a,b] {\ displaystyle [a, b]}   the grid{ti} {\ displaystyle \ {t_ {i} \}}   ofn {\ displaystyle n}   points:a=tone<t2<t3<⋯<tn=b {\ displaystyle a = t_ {1} <t_ {2} <t_ {3} <\ dots <t_ {n} = b}   and require that with the value of the parametert=ti {\ displaystyle t = t_ {i}}   the curve passed through a pointPi {\ displaystyle P_ {i}}   , so thatr(ti)=ri {\ displaystyle \ mathbf {r} (t_ {i}) = \ mathbf {r} _ {i}}   .

The introduction of parameterization and grids can be done in various ways. Usually choose either a uniform grid, assuminga=0 {\ displaystyle a = 0}   ,b=n-one {\ displaystyle b = n-1}   ,ti=i-one {\ displaystyle t_ {i} = i-1}   , or, more preferably, connect the points with segments and as the difference of the parameter valuesti+one-ti {\ displaystyle t_ {i + 1} -t_ {i}}   take the length of the segmentri+one-ri {\ displaystyle \ mathbf {r} _ {i + 1} - \ mathbf {r} _ {i}}   .

One common interpolation technique is to use a polynomial curve fromt {\ displaystyle t}   degrees ofn-one {\ displaystyle n-1}   , i.e. as a function

r(t)=p(n-one)(t)=∑k=onenaktn-k{\ displaystyle \ mathbf {r} (t) = \ mathbf {p} ^ {(n-1)} (t) = \ sum _ {k = 1} ^ {n} \ mathbf {a} _ {k} t ^ {nk}}  

Polynomial hasn {\ displaystyle n}   coefficientsak {\ displaystyle \ mathbf {a} _ {k}}   which can be found from the conditionsr(ti)=ri {\ displaystyle \ mathbf {r} (t_ {i}) = \ mathbf {r} _ {i}}   .

These conditions lead to a system of linear equations for the coefficientsak {\ displaystyle \ mathbf {a} _ {k}}  

(onetonetone2...tonen-oneonet2t22...t2n-one⋮⋮⋮⋮onetntn2...tnn-one)(anan-one⋮aone)=(roner2⋮rn){\ displaystyle {\ begin {pmatrix} 1 & t_ {1} & t_ {1} ^ {2} & \ ldots & t_ {1} ^ {n-1} \\ 1 & t_ {2} & t_ {2} ^ {2} & \ ldots & t_ {2} ^ {n-1} \\\ vdots & \ vdots & \ vdots && \ vdots \\ 1 & t_ {n} & t_ {n} ^ {2} & \ ldots & t_ {n} ^ {n-1 } \ end {pmatrix}} {\ begin {pmatrix} \ mathbf {a} _ {n} \\\ mathbf {a} _ {n-1} \\\ vdots \\\ mathbf {a} _ {1} \ end {pmatrix}} = {\ begin {pmatrix} \ mathbf {r} _ {1} \\\ mathbf {r} _ {2} \\\ vdots \\\ mathbf {r} _ {n} \ end {pmatrix}}}  

Note that three systems of equations need to be solved: forx {\ displaystyle x}   ,y {\ displaystyle y}   andz {\ displaystyle z}   coordinates. All of them have one matrix of coefficients, reversing which, according to the values ​​of radius vectorsri {\ displaystyle \ mathbf {r} _ {i}}   points are calculated vectorsak {\ displaystyle \ mathbf {a} _ {k}}   polynomial coefficients. Matrix determinant

W(tone,t2,...,tn)=|onetonetone2...tonen-oneonet2t22...t2n-one⋮⋮⋮⋮onetntn2...tnn-one|=∏i,j,i>j(ti-tj){\ displaystyle W (t_ {1}, t_ {2}, \ ldots, t_ {n}) = {\ begin {vmatrix} 1 & t_ {1} & t_ {1} ^ {2} & \ ldots & t_ {1} ^ {n-1} \\ 1 & t_ {2} & t_ {2} ^ {2} & \ ldots & t_ {2} ^ {n-1} \\\ vdots & \ vdots & \ vdots && \ vdots \\ 1 & t_ {n } & t_ {n} ^ {2} & \ ldots & t_ {n} ^ {n-1} \ end {vmatrix}} = \ prod _ {i, j, i> j} (t_ {i} -t_ {j })}  

called the determinant of Vandermond . If the grid nodes do not match, it is nonzero, so the system of equations has a solution.

In addition to direct matrix inversion, there are several other ways to calculate the interpolation polynomial. Due to the uniqueness of the polynomial, we are talking about various forms of its notation.

Benefits

  • For a given set of points and parameter grid, the curve is constructed uniquely.
  • The curve is interpolation, that is, it passes through all given points.
  • The curve has continuous derivatives of any order.

Weaknesses

  • As the number of points increases, the order of the polynomial increases, and with it, the number of operations that must be performed to calculate the point on the curve increases.
  • As the number of points increases, oscillations can occur in the interpolation curve (see example below).

Example

 
Interpolation on a sequence of grids. Runge example.

A classic example ( Runge ) showing the appearance of oscillations in an interpolation polynomial is interpolation on a uniform grid of function values

f(x)=oneone+x2{\ displaystyle f (x) = {\ frac {1} {1 + x ^ {2}}}}  

We introduce on the segment[-five,five] {\ displaystyle [-5.5]}   uniform gridxi=-five+(i-one)h {\ displaystyle x_ {i} = - 5+ (i-1) h}   ,h=ten/(n-one) {\ displaystyle h = 10 / (n-1)}   ,one≤i≤n {\ displaystyle 1 \ leq i \ leq n}   and consider the behavior of the polynomial

y(x)=∑i=onenaixn-i{\ displaystyle y (x) = \ sum _ {i = 1} ^ {n} a_ {i} x ^ {ni}}  

which at pointsxi {\ displaystyle x_ {i}}   takes valuesyi=one/(one+xi2) {\ displaystyle y_ {i} = 1 / (1 + x_ {i} ^ {2})}   . The figure shows graphs of the function itself (dash-dotted line) and three interpolation curves forn=3,five,9 {\ displaystyle n = 3,5,9}   :

  • grid interpolationxone=-five,x2=0,x3=five {\ displaystyle x_ {1} = - 5, x_ {2} = 0, x_ {3} = 5}   - quadratic parabola;
  • grid interpolationxone=-five,x2=-2.5,x3=0,xfour=2.5,xfive=five {\ displaystyle x_ {1} = - 5, x_ {2} = - 2.5, x_ {3} = 0, x_ {4} = 2.5, x_ {5} = 5}   - polynomial of the fourth degree;
  • grid interpolationxone=-five,x2=-3.75,x3=-2.5,xfour=-1.25,xfive=0,x6=1.25,x7=2.5,xeight=3.75,x9=five {\ displaystyle x_ {1} = - 5, x_ {2} = - 3.75, x_ {3} = - 2.5, x_ {4} = - 1.25, x_ {5} = 0, x_ {6} = 1.25, x_ {7} = 2.5, x_ {8} = 3.75, x_ {9} = 5}   - polynomial of the eighth degree.

The values ​​of the interpolation polynomial even for smooth functions at intermediate points can strongly deviate from the values ​​of the function itself.

See also

  • Lagrange Interpolation Polynomial
  • Newton Interpolation Polynomial
  • Wavelet
Source - https://ru.wikipedia.org/w/index.php?title=Interpolation_algebraic_polynomials&oldid=99142163


More articles:

  • Potokovsky Village Council (Kremenchug District)
  • Zwickau (football club)
  • Superactinoids
  • Review of Economic Dynamics
  • Flag of Nizhnevartovsk District
  • Ong Bak 3
  • Savannakhet (city)
  • James Chalmers
  • Raus Sustainability Criterion
  • Khachkar (magazine)

All articles

Clever Geek | 2019