Clever Geek Handbook
📜 ⬆️ ⬇️

Right multidimensional polyhedra

A regular n- dimensional polytope is a polyhedron of an n- dimensional Euclidean space that is most symmetric in a sense. Regular three-dimensional polyhedra are also called platonic solids .

Content

Definition

The n- dimensional polyhedron flagP {\ displaystyle P}   called a set of its facesF=(F0,Fone,...,Fn-one) {\ displaystyle F = (F_ {0}, F_ {1}, \ dots, F_ {n-1})}   whereFi {\ displaystyle F_ {i}}   there isi {\ displaystyle i}   -dimensional facet of the polyhedron P, andFi⊆Fn-one {\ displaystyle F_ {i} \ subseteq F_ {n-1}}   fori=one,2,...,n-one {\ displaystyle i = 1,2, \ dots, n-1}   .

A regular n- dimensional polytope is a convex n- dimensional polyhedronP {\ displaystyle P}   which for any two of its flagsF {\ displaystyle F}   andF′ {\ displaystyle F '}   there is movementP {\ displaystyle P}   translatingF {\ displaystyle F}   atF′ {\ displaystyle F '}   .

Classification

Dimension 4

There are 6 regular 4-dimensional polyhedra (polycells):

TitlePicture
( Schlegel diagram )
Symbol
Schläfli
CellNumber
cells
Number
facets
Number
ribs
Number
tops
Pyatichnik {3.3,3}right
tetrahedron
fivetentenfive
Tesseract {4.3,3}cubeeight2432sixteen
16th month {3.3,4}right
tetrahedron
sixteen3224eight
Twenty Quarter {3,4,3}octahedron24969624
One hundred and fifty {5.3,3}dodecahedron1207201200600
Six Cell {3,3,5}right
tetrahedron
6001200720120

Dimensions 5 and above

In each of the higher dimensions, there are 3 regular polyhedra ( polytope ):

TitleSchläfli Symbol
n- dimensional
correct simplex
{3; 3; ...; 3; 3}
n- dimensional
hypercube
{4; 3; ...; 3; 3}
n- dimensional
hyperoctahedron
{3; 3; ...; 3; 4}

Geometric Properties

Angles

The dihedral angle between (n-1) -dimensional adjacent faces of a regular n-dimensional polyhedron defined by its Schläfli symbol{pone,p2,p3,...,pN-3,pN-2,pN-one} {\ displaystyle \ {p_ {1}, p_ {2}, p_ {3}, \ dots, p_ {N-3}, p_ {N-2}, p_ {N-1} \}}   is determined by the formula [1] [2] [3] :

sin2⁡β=cos2⁡πpn-oneone-cos2⁡πpn-2one-cos2⁡πpn-3⋱one-cos2⁡πp3one-cos2⁡πp2one-cos2⁡πpone{\ displaystyle \ sin ^ {2} \ beta = {\ frac {\ cos ^ {2} {\ frac {\ pi} {p_ {n-1}}}} {1 - {\ frac {\ cos ^ { 2} {\ frac {\ pi} {p_ {n-2}}} {1 - {\ frac {\ cos ^ {2} {\ frac {\ pi} {p_ {n-3}}}} { \ frac {\ ddots} {1 - {\ frac {\ cos ^ {2} {\ frac {\ pi} {p_ {3}}} {1 - {\ frac {\ cos ^ {2} {\ frac {\ pi} {p_ {2}}} {1- \ cos ^ {2} {\ frac {\ pi} {p_ {1}}}}}}}}}}}}  

Whereβ {\ displaystyle \ beta}   - half the angle between (n-1) -dimensional adjacent faces of a regular n-dimensional polyhedron

Radii, Volumes

The radius of the inscribed N-dimensional sphere:

rN=rN-onetg⁡β,{\ displaystyle r_ {N} = r_ {N-1} \ operatorname {tg} {\ beta},}  

WhererN-one {\ displaystyle r_ {N-1}}   Is the radius of the inscribed (N-1) -dimensional sphere of the face.

The volume of an N-dimensional polyhedron:

VN=oneNVN-oneAN-onerN,{\ displaystyle V_ {N} = {\ frac {1} {N}} V_ {N-1} A_ {N-1} r_ {N},}  

WhereVN-one {\ displaystyle V_ {N-1}}   - the volume of (N-1) -dimensional face,AN-one {\ displaystyle A_ {N-1}}   - the number of (N-1) -dimensional faces.

Tiles

In dimension n = 4

  • Tesseract Honeycomb
  • Hex Cell Cellular
  • Twenty Four Cell Cells

In dimension n ≥ 5

  • Hypercubic Honeycombs

See also

  • Plato's body
  • List of correct polyhedra and connections

Notes

  1. Om Sommerville DMY Dimensions . - London, 1929. - p. 189. - 196 p.
  2. ↑ Coxeter HSM Regular Polytoopes . - London, 1948. - p. 134. - 321 p.
  3. ↑ B. Rosenfeld Multidimensional spaces . - Science, 1966. - p. 193.

Links

  • Visual example on YouTube
  • Regular Polytopes (Platonic solids) in 4D (Neopr.) (2003). The date of circulation is January 30, 2011. Archived May 4, 2012.
  • E. Yu. Smirnov. Reflection groups and regular polyhedra . - M .: MTSNMO, 2009. - 48 p. - ISBN 978-5-94057-525-2 .
  • E. B. Winberg, O. V. Schwartzman. Discrete groups of motions of spaces of constant curvature // Itogi Nauki i Tekhn. Ser. Let's do it. problems mat. Funda. directions. - 1988. - T. 29 . - p . 147–259 .
Source - https://ru.wikipedia.org/w/index.php?title=Right_multi-dimensional_polyhedrons&oldid=100115130


More articles:

  • Logvinova, Vera Vasilievna
  • Shaevsky, Yuri Ivanovich
  • Kataeva, Ester Davydovna
  • Aurubis
  • Broda, Martina
  • Where dreams lead (album)
  • Aspects of Love
  • Orsha (river)
  • Rally Trophy
  • Virgin Mary (anthem)

All articles

Clever Geek | 2019