Clever Geek Handbook
📜 ⬆️ ⬇️

Fundamental class

A fundamental class is a homology class of an oriented variety that corresponds to the “whole variety”. An intuitively fundamental class can be imagined as the sum of simplices of the maximum dimension of a suitable triangulation of a manifold.

Fundamental manifold classM {\ displaystyle M} M usually denoted by[M] {\ displaystyle [M]} {\ displaystyle [M]} .

Content

Definition

Closed orientable manifold

If the varietyM {\ displaystyle M}   dimensionsn {\ displaystyle n}   is connected orientable and closed , thenn {\ displaystyle n}   -th homology group is infinite cyclic :Hn(M,Z)≅Z {\ displaystyle H_ {n} (M, \ mathbf {Z}) \ cong \ mathbf {Z}}   . The orientation of the manifold is determined by the choice of the generating element of the group or isomorphismZ→Hn(M,Z) {\ displaystyle \ mathbf {Z} \ to H_ {n} (M, \ mathbf {Z})}   . The generating element is called the fundamental class .

Formally incoherent orientable manifoldM=∪iMi {\ displaystyle M = \ cup _ {i} M_ {i}}   as a fundamental class you can compare the amountΣ[Mi] {\ displaystyle \ sum [M_ {i}]}   fundamental classes of all its connected componentsMi {\ displaystyle M_ {i}}   . However, this element is not a group spawner.Hn(M,Z)=⊕Hn(Mi,Z)=Z⊕⋯⊕Z {\ displaystyle H_ {n} (M, \ mathbf {Z}) = \ oplus H_ {n} (M_ {i}, \ mathbf {Z}) = \ mathbf {Z} \ oplus \ dots \ oplus \ mathbf { Z}}   .

Non-orientable manifold

For a non-orientable manifold, the groupHn(M;Z)=0 {\ displaystyle H_ {n} (M; \ mathbf {Z}) = 0}   if in this case M is connected and closed, thenHn(M;Z2)=Z2 {\ displaystyle H_ {n} (M; \ mathbf {Z} _ {2}) = \ mathbf {Z} _ {2}}   . The parent element of the groupHn(M;Z2) {\ displaystyle H_ {n} (M; \ mathbf {Z} _ {2})}   is called the fundamental class of a non-orientable manifold M.

Z2{\ displaystyle \ mathbf {Z} _ {2}}   -fundamental class of a variety is used in determining the Stiefel-Whitney numbers .

Edge Variety

If M is a compact orientable manifold with boundary∂M {\ displaystyle \ partial M}   , the n -th relative homology group is infinite cyclic :Hn(M,∂M)≅Z {\ displaystyle H_ {n} (M, \ partial M) \ cong \ mathbf {Z}}   . The generating element of the groupHn(M,∂M) {\ displaystyle H_ {n} (M, \ partial M)}   is called the fundamental class of a manifold with a boundary.

Poincare duality

The main result of the homological theory of varieties is Poincaré duality between the homology groups and the cohomology of the manifold. Corresponding Poincare isomorphismD:Hk(M;Z)→Hn-k(M;Z) {\ displaystyle D: H ^ {k} (M; \ mathbf {Z}) \ to H_ {nk} (M; \ mathbf {Z})}   (for oriented) andD:Hk(M;Z2)→Hn-k(M;Z2) {\ displaystyle D: H ^ {k} (M; \ mathbf {Z} _ {2}) \ to H_ {nk} (M; \ mathbf {Z} _ {2})}   (for a non-orientable) manifold is determined by the corresponding fundamental class of the manifold:

D(α)=[M]⌢α{\ displaystyle D (\ alpha) = [M] \ frown \ alpha}   ,

Where⌢ {\ displaystyle \ frown}   denotes⌢ {\ displaystyle \ frown}   -the multiplication of homological and cohomological classes.

Degree of display

If aM {\ displaystyle M}   ,N {\ displaystyle N}   - connected closed oriented manifolds of the same dimension, andf:M→N {\ displaystyle f: M \ to N}   - continuous mapping , then

f∗[M]= k [ N ]{\ displaystyle f _ {*} [M] = k [N]}   ,

Wherek {\ displaystyle k}   - some integer . This number is called the degree of display.f {\ displaystyle f}   and is denoted by deg f .

Literature

  • A.T. Fomenko, D.B. Fuchs . The course of homotopic topology - M: Nauka, 1989.
  • A. Dold Lectures on algebraic topology - M: Mir, 1976.
Source - https://ru.wikipedia.org/w/index.php?title=Fundamental_class&oldid=53755257


More articles:

  • List of Systematic Nerds / B
  • Znamenskaya operation
  • Gadzhiev, Magomedamin Nurutdinovich
  • Territory of district subordination
  • Productions of the Riga Russian Chekhov Theater
  • Skripali (Romensky District)
  • Jonathan Segal
  • Sport in Omsk
  • Verenitsyn, Konstantin Vasilievich
  • Ruzheva, Altyn Ibragimovna

All articles

Clever Geek | 2019