Clever Geek Handbook
📜 ⬆️ ⬇️

The formula of Liouville - Ostrogradsky

The Ostrogradsky-Liouville formula is a formula linking the Wronsky determinant (Wronskian) for solutions of a differential equation and the coefficients in this equation.

Let there be a differential equation of the form

y(n)+Pone(x)y(n-one)+P2(x)y(n-2)+...+Pn(x)y=0,{\ displaystyle y ^ {(n)} + P_ {1} (x) y ^ {(n-1)} + P_ {2} (x) y ^ {(n-2)} + ... + P_ {n} (x) y = 0,} y ^ {{((n)}} + P_ {1} (x) y ^ {{(n-1)}} + P_ {2} (x) y ^ {{(n-2)}} + .. . + P_ {n} (x) y = 0,

thenW(x)=W(x0)e-∫x0xPone(ζ)dζ=Ce-∫Pone(x)dx, {\ displaystyle W (x) = W (x_ {0}) e ^ {- \ int _ {x_ {0}} ^ {x} P_ {1} (\ zeta) d \ zeta} = Ce ^ {- \ int P_ {1} (x) dx},} W (x) = W (x_ {0}) e ^ {{- \ int _ {{x_ {0}}} ^ {x} P_ {1} (\ zeta) d \ zeta}} = Ce ^ {{ - \ int P_ {1} (x) dx}}, WhereW(x) {\ displaystyle W (x)} W (x) - Vronsky qualifier

For a linear homogeneous system of differential equations

y′(x)=A(x)y(x),{\ displaystyle y '(x) = A (x) y (x),} y '(x) = A (x) y (x), WhereA(x) {\ displaystyle A (x)} A (x) - continuous square order matrixn {\ displaystyle n} n , the Liouville-Ostrogradsky formula is valid

W(x)=W(x0)e∫x0xtr⁡A(ζ)dζ,{\ displaystyle W (x) = W (x_ {0}) e ^ {\ int _ {x_ {0}} ^ {x} \ mathop {\ rm {tr}} A (\ zeta) d \ zeta}, } W (x) = W (x_ {0}) e ^ {{\ int _ {{x_ {0}}} ^ {x} {\ mathop {{\ rm {tr}}}} A (\ zeta) d \ zeta}}, Wheretr⁡A(x) {\ displaystyle \ mathop {\ rm {tr}} A (x)} {\ mathop {{\ rm {tr}}}} A (x) - matrix traceA(x) {\ displaystyle A (x)} A (x)

Content

Differentiation rule for dimension determinant 2

Derivative of the determinantΔ=Δ(x)=|aeleven(x)a12(x)a21(x)a22(x)|=aelevena22-a12a21 {\ displaystyle \ Delta = \ Delta (x) = {\ begin {vmatrix} a_ {11} (x) & a_ {12} (x) \\ a_ {21} (x) & a_ {22} (x) \ end {vmatrix}} = a_ {11} a_ {22} -a_ {12} a_ {21}}   by the variable x has the formdΔdx=(aelevena22-a12a21)′=aeleven′a22+aelevena22′-a12′a21-a12a21′=|aeleven′a12′a21a22|+|aelevena12a21′a22′| {\ displaystyle {\ frac {d \ Delta} {dx}} = (a_ {11} a_ {22} -a_ {12} a_ {21}) '= a_ {11}' a_ {22} + a_ {11 } a_ {22} '- a_ {12}' a_ {21} -a_ {12} a_ {21} '= {\ begin {vmatrix} a_ {11}' & a_ {12} '\\ a_ {21} & a_ {22} \ end {vmatrix}} + {\ begin {vmatrix} a_ {11} & a_ {12} \\ a_ {21} '& a_ {22}' \ end {vmatrix}}}  

Rule of differentiation of a dimension determinantn {\ displaystyle n} n

Let beΔ=Δ(x)=det(aeleven(x)a12(x)...aonen(x)a21(x)a22(x)...a2n(x)⋮⋮⋱⋮anone(x)an2(x)...ann(x)) {\ displaystyle \ Delta = \ Delta (x) = \ det \ left ({\ begin {matrix} a_ {11} (x) & a_ {12} (x) & \ dots & a_ {1n} (x) \\ a_ {21} (x) & a_ {22} (x) & \ dots & a_ {2n} (x) \\\ vdots & \ vdots & \ ddots & \ vdots \\ a_ {n1} (x) & a_ {n2} ( x) & \ dots & a_ {nn} (x) \\\ end {matrix}} \ right)}  

Then for the derivativeΔ′(x) {\ displaystyle \ Delta '(x)}   right

Δ′(x)=|aeleven′(x)a12′(x)...aonen′(x)a21(x)a22(x)...a2n(x)⋮⋮⋱⋮anone(x)an2(x)...ann(x)|+|aeleven(x)a12(x)...aonen(x)a21′(x)a22′(x)...a2n′(x)⋮⋮⋱⋮anone(x)an2(x)...ann(x)|+⋯+|aeleven(x)a12(x)...aonen(x)a21(x)a22(x)...a2n(x)⋮⋮⋱⋮anone′(x)an2′(x)...ann′(x)|{\ displaystyle \ Delta '(x) = {\ begin {vmatrix} a_ {11}' (x) & a_ {12} '(x) & \ dots & a_ {1n}' (x) \\ a_ {21} ( x) & a_ {22} (x) & \ dots & a_ {2n} (x) \\\ vdots & \ vdots & \ ddots & \ vdots \\ a_ {n1} (x) & a_ {n2} (x) & \ dots & a_ {nn} (x) \\\ end {vmatrix}} + {\ begin {vmatrix} a_ {11} (x) & a_ {12} (x) & \ dots & a_ {1n} (x) \\ a_ {21} '(x) & a_ {22}' (x) & \ dots & a_ {2n} '(x) \\\ vdots & \ vdots & \ ddots & \ vdots \\ a_ {n1} (x) & a_ { n2} (x) & \ dots & a_ {nn} (x) \\\ end {vmatrix}} + \ dots + {\ begin {vmatrix} a_ {11} (x) & a_ {12} (x) & \ dots & a_ {1n} (x) \\ a_ {21} (x) & a_ {22} (x) & \ dots & a_ {2n} (x) \\\ vdots & \ vdots & \ ddots & \ vdots \\ a_ { n1} '(x) & a_ {n2}' (x) & \ dots & a_ {nn} '(x) \\\ end {vmatrix}}}  

(ati {\ displaystyle i}   -th term is differentiatedi {\ displaystyle i}   st row)

Evidence

We use the formula for the complete decomposition of the determinant

Δ(x)=∑ione,i2,...,in(-one)P(ione,i2,...,in)aoneione(x)a2i2(x)⋯anin(x){\ displaystyle \ Delta (x) = \ sum _ {i_ {1}, i_ {2}, \ dots, i_ {n}} (- 1) ^ {P (i_ {1}, i_ {2}, \ dots, i_ {n})} a_ {1i_ {1}} (x) a_ {2i_ {2}} (x) \ cdots a_ {ni_ {n}} (x)}  

The sum is taken from various permutations of numbersone,2,...,n {\ displaystyle 1,2, \ dots, n}   ,P(⋅) {\ displaystyle P (\ cdot)}   - parity permutation .

Differentiating this expression byx {\ displaystyle x}   we get

Δ′(x)=∑ione,i2,...,in(-one)P(ione,i2,...,in)d(aoneione(x)a2i2(x)⋯anin(x))dx==∑ione,i2,...,in(-one)P(ione,i2,...,in)(aoneione′(x)a2i2(x)⋯anin(x)+⋯+aoneione(x)a2i2(x)⋯anin′(x))==∑ione,i2,...,in(-one)P(ione,i2,...,in)aoneione′(x)a2i2(x)⋯anin(x)++∑ione,i2,...,in(-one)P(ione,i2,...,in)aoneione(x)a2i2′(x)⋯anin(x)++⋯++∑ione,i2,...,in(-one)P(ione,i2,...,in)aoneione(x)a2i2(x)⋯anin′(x){\ displaystyle {\ begin {aligned} [l] \ Delta '(x) & = \ sum _ {i_ {1}, i_ {2}, \ dots, i_ {n}} (- 1) ^ {P ( i_ {1}, i_ {2}, \ dots, i_ {n})} {\ frac {d \ left (a_ {1i_ {1}} (x) a_ {2i_ {2}} (x) \ cdots a_ {ni_ {n}} (x) \ right)} {dx}} = \\ & = \ sum _ {i_ {1}, i_ {2}, \ dots, i_ {n}} (- 1) ^ { P (i_ {1}, i_ {2}, \ dots, i_ {n})} \ left (a_ {1i_ {1}} '(x) a_ {2i_ {2}} (x) \ cdots a_ {ni_ {n}} (x) + \ dots + a_ {1i_ {1}} (x) a_ {2i_ {2}} (x) \ cdots a_ {ni_ {n}} '(x) \ right) = \\ & = \ sum _ {i_ {1}, i_ {2}, \ dots, i_ {n}} (- 1) ^ {P (i_ {1}, i_ {2}, \ dots, i_ {n}) } a_ {1i_ {1}} '(x) a_ {2i_ {2}} (x) \ cdots a_ {ni_ {n}} (x) + \\ & + \ sum _ {i_ {1}, i_ { 2}, \ dots, i_ {n}} (- 1) ^ {P (i_ {1}, i_ {2}, \ dots, i_ {n})} a_ {1i_ {1}} (x) a_ { 2i_ {2}} '(x) \ cdots a_ {ni_ {n}} (x) + \\ & + \ dots + \\ & + \ sum _ {i_ {1}, i_ {2}, \ dots, i_ {n}} (- 1) ^ {P (i_ {1}, i_ {2}, \ dots, i_ {n})} a_ {1i_ {1}} (x) a_ {2i_ {2}} ( x) \ cdots a_ {ni_ {n}} '(x) \ end {aligned}}}  

In each sum, the elements are differentiatedi {\ displaystyle i}   st row and only they. Replacing the sums with determinants, we obtain

Δ′(x)=|aeleven′(x)a12′(x)...aonen′(x)a21(x)a22(x)...a2n(x)⋮⋮⋱⋮anone(x)an2(x)...ann(x)|+|aeleven(x)a12(x)...aonen(x)a21′(x)a22′(x)...a2n′(x)⋮⋮⋱⋮anone(x)an2(x)...ann(x)|+⋯+|aeleven(x)a12(x)...aonen(x)a21(x)a22(x)...a2n(x)⋮⋮⋱⋮anone′(x)an2′(x)...ann′(x)|{\ displaystyle \ Delta '(x) = {\ begin {vmatrix} a_ {11}' (x) & a_ {12} '(x) & \ dots & a_ {1n}' (x) \\ a_ {21} ( x) & a_ {22} (x) & \ dots & a_ {2n} (x) \\\ vdots & \ vdots & \ ddots & \ vdots \\ a_ {n1} (x) & a_ {n2} (x) & \ dots & a_ {nn} (x) \\\ end {vmatrix}} + {\ begin {vmatrix} a_ {11} (x) & a_ {12} (x) & \ dots & a_ {1n} (x) \\ a_ {21} '(x) & a_ {22}' (x) & \ dots & a_ {2n} '(x) \\\ vdots & \ vdots & \ ddots & \ vdots \\ a_ {n1} (x) & a_ { n2} (x) & \ dots & a_ {nn} (x) \\\ end {vmatrix}} + \ dots + {\ begin {vmatrix} a_ {11} (x) & a_ {12} (x) & \ dots & a_ {1n} (x) \\ a_ {21} (x) & a_ {22} (x) & \ dots & a_ {2n} (x) \\\ vdots & \ vdots & \ ddots & \ vdots \\ a_ { n1} '(x) & a_ {n2}' (x) & \ dots & a_ {nn} '(x) \\\ end {vmatrix}}}  

Proof for a second order equation

Let in the equationy″+p(x)y′+q(x)y=0 {\ displaystyle y '' + p (x) y '+ q (x) y = 0}   the functionsp(x),q(x) {\ displaystyle p (x), q (x)}   continuous on[a;b] {\ displaystyle [a; b]}   , but

yone=yone(x),y2=y2(x){\ displaystyle y_ {1} = y_ {1} (x), y_ {2} = y_ {2} (x)}   - solutions of this equation.

Differentiating Vronsky's determinant, we obtain

dWdx=ddx|yoney2yone′y2′|=|yone′y2′yone′y2′|+|yoney2yone″y2″|{\ displaystyle {\ frac {dW} {dx}} = {\ frac {d} {dx}} {\ begin {vmatrix} y_ {1} & y_ {2} \\ y_ {1} '& y_ {2}' \ end {vmatrix}} = {\ begin {vmatrix} y_ {1} '& y_ {2}' \\ y_ {1} '& y_ {2}' \ end {vmatrix}} + {\ begin {vmatrix} y_ { 1} & y_ {2} \\ y_ {1} '' & y_ {2} '' \ end {vmatrix}}}  

The first term is 0, since this determinant contains 2 identical lines. Substituting

yone″=-pyone′-qyone{\ displaystyle y_ {1} '' = - py_ {1} '- qy_ {1}}  

y2″=-py2′-qy2{\ displaystyle y_ {2} '' = - py_ {2} '- qy_ {2}}  

in the second term, we get

dWdx=|yoney2-pyone′-qyone-py2′-qy2|{\ displaystyle {\ frac {dW} {dx}} = {\ begin {vmatrix} y_ {1} & y_ {2} \\ - py_ {1} '- qy_ {1} & - py_ {2}' - qy_ {2} \ end {vmatrix}}}  

Adding the first row multiplied by q to the second, we get

dWdx=|yoney2-pyone′-py2′|=-pW{\ displaystyle {\ frac {dW} {dx}} = {\ begin {vmatrix} y_ {1} & y_ {2} \\ - py_ {1} '& - py_ {2}' \ end {vmatrix}} = -pW}  

solutions are linearly independent, therefore

W≠0→dWW=-pdx{\ displaystyle W \ neq 0 \ to {\ frac {dW} {W}} = - pdx}   - differential equation with separable variables.

Integrating, we get

ln⁡|W|=-∫p(x)dx+ln⁡|C|→ln⁡|WC|=-∫p(x)dx→W=Ce-∫p(x)dx{\ displaystyle \ ln | W | = - \ int p (x) dx + \ ln | C | \ to \ ln \ left | {\ frac {W} {C}} \ right | = - \ int p (x) dx \ to W = Ce ^ {- \ int p (x) dx}}  

Proof for a linear system of ordinary differential equations

Let vector functionsyone(x),y2(x),...,yn(x) {\ displaystyle {\ mathbf {y}} _ {1} (x), {\ mathbf {y}} _ {2} (x), \ dots, {\ mathbf {y}} _ {n} (x) }   - solutions of the linear ODE system. We introduce the matrixΦ {\ displaystyle \ Phi}   in the following way

Φ(x)=‖yone(x)y2(x)...yn(x)‖{\ displaystyle \ Phi (x) = \ left \ | {\ begin {matrix} {\ mathbf {y}} _ {1} (x) & {\ mathbf {y}} _ {2} (x) & \ dots & {\ mathbf {y}} _ {n} (x) \ end {matrix}} \ right \ |}  

ThenW(x)≡detΦ(x) {\ displaystyle W (x) \ equiv \ det \ Phi (x)}   . Take advantage of the fact thatyi(x) {\ displaystyle y_ {i} (x)}   - solutions of the ODE system, i.e.yi′(x)=A(x)yi(x) {\ displaystyle {\ mathbf {y}} _ {i} '(x) = A (x) {\ mathbf {y}} _ {i} (x)}   .

In matrix form, the latter can be represented as‖yone′(x)y2′(x)...yn′(x)‖=‖A(x)yone(x)A(x)y2(x)...A(x)yn(x)‖=A(x)Φ(x) {\ displaystyle \ left \ | {\ begin {matrix} {\ mathbf {y}} _ {1} '(x) & {\ mathbf {y}} _ {2}' (x) & \ dots & {\ mathbf {y}} _ {n} '(x) \ end {matrix}} \ right \ | = \ left \ | {\ begin {matrix} A (x) {\ mathbf {y}} _ {1} ( x) & A (x) {\ mathbf {y}} _ {2} (x) & \ dots & A (x) {\ mathbf {y}} _ {n} (x) \ end {matrix}} \ right \ | = A (x) \ Phi (x)}  

or introducing a derivative of a matrix as a matrix of derivatives of each element

Φ′(x)=A(x)Φ(x){\ displaystyle \ Phi '(x) = A (x) \ Phi (x)}  

Let beφi(x) {\ displaystyle \ varphi _ {i} (x)}   -i {\ displaystyle i}   matrix rowΦ(x) {\ displaystyle \ Phi (x)}   . Then

φi′(x)=∑j=onenaij(x)φj(x){\ displaystyle \ varphi _ {i} '(x) = \ sum _ {j = 1} ^ {n} a_ {ij} (x) \ varphi _ {j} (x)}  

The latter means that the derivative ofi {\ displaystyle i}   matrix rowΦ(x) {\ displaystyle \ Phi (x)}   there is a linear combination of all rows of this matrix with coefficients fromi {\ displaystyle i}   matrix rowA(x) {\ displaystyle A (x)}   . Consider the determinant of a matrixΦ(x) {\ displaystyle \ Phi (x)}   , whereini {\ displaystyle i}   -th line is differentiated. The determinant does not change if fromi {\ displaystyle i}   the th row of this matrix subtract the linear combination of all the other rows.

|φone(x)φ2(x)⋮φi′(x)⋮φn(x)|=|φone(x)φ2(x)⋮∑j=onenaij(x)φj(x)⋮φn(x)|=|φone(x)φ2(x)⋮∑j=onenaij(x)φj(x)-∑j≠iaij(x)φj(x)⋮φn(x)|=|φone(x)φ2(x)⋮aii(x)φi(x)⋮φn(x)|=aii(x)W(x){\ displaystyle \ left | {\ begin {matrix} \ varphi _ {1} (x) \\\ varphi _ {2} (x) \\\ vdots \\\ varphi _ {i} '(x) \\ \ vdots \\\ varphi _ {n} (x) \\\ end {matrix}} \ right | = \ left | {\ begin {matrix} \ varphi _ {1} (x) \\\ varphi _ {2 } (x) \\\ vdots \\\ sum _ {j = 1} ^ {n} a_ {ij} (x) \ varphi _ {j} (x) \\\ vdots \\\ varphi _ {n} (x) \\\ end {matrix}} \ right | = \ left | {\ begin {matrix} \ varphi _ {1} (x) \\\ varphi _ {2} (x) \\\ vdots \\ \ sum _ {j = 1} ^ {n} a_ {ij} (x) \ varphi _ {j} (x) - \ sum _ {j \ neq i} a_ {ij} (x) \ varphi _ {j } (x) \\\ vdots \\\ varphi _ {n} (x) \\\ end {matrix}} \ right | = \ left | {\ begin {matrix} \ varphi _ {1} (x) \ \\ varphi _ {2} (x) \\\ vdots \\ a_ {ii} (x) \ varphi _ {i} (x) \\\ vdots \\\ varphi _ {n} (x) \\\ end {matrix}} \ right | = a_ {ii} (x) W (x)}  

Using the differentiation formula for the determinant, we obtain

W′(x)=aeleven(x)W(x)+a22(x)W(x)+⋯+ann(x)W(x)=tr⁡A(x)W(x){\ displaystyle W '(x) = a_ {11} (x) W (x) + a_ {22} (x) W (x) + \ dots + a_ {nn} (x) W (x) = \ operatorname {tr} A (x) W (x)}  

The last ordinary differential equation has a solution

W(x)=W(x0)e∫x0xtr⁡A(ζ)dζ{\ displaystyle W (x) = W (x_ {0}) e ^ {\ int _ {x_ {0}} ^ {x} \ operatorname {tr} A (\ zeta) d \ zeta}}  

Proof for a linear differential equation of arbitrary order

Linear differential equationn {\ displaystyle n}   th order

y(n)(x)+Pone(x)y(n-one)(x)+⋯+Pn-one(x)y′(x)+Pn(x)y(x)=0{\ displaystyle y ^ {(n)} (x) + P_ {1} (x) y ^ {(n-1)} (x) + \ dots + P_ {n-1} (x) y '(x ) + P_ {n} (x) y (x) = 0}  

equivalent to the following system

yn-one′(x)=-Pone(x)yn-one(x)-⋯-Pn-one(x)yone(x)-Pn(x)y0(x)yn-2′(x)=yn-one⋮yone′(x)=y2y0′(x)=yone{\ displaystyle {\ begin {aligned} y_ {n-1} '(x) & = - P_ {1} (x) y_ {n-1} (x) - \ dots -P_ {n-1} (x ) y_ {1} (x) -P_ {n} (x) y_ {0} (x) \\ y_ {n-2} '(x) & = y_ {n-1} \\\ vdots \\ y_ {1} '(x) & = y_ {2} \\ y_ {0}' (x) & = y_ {1} \\\ end {aligned}}}  

with matrixA(x) {\ displaystyle A (x)}   of the following kind

A(x)=(0one0...000one...000⋱⋱000...0one-Pn(x)-Pn-one(x)...-P2(x)-Pone(x)){\ displaystyle A (x) = \ left ({\ begin {matrix} 0 & 1 & 0 & \ dots & 0 \\ 0 & 0 & 1 & \ dots & 0 \\ 0 & 0 & \ ddots & \ ddots & 0 \\ 0 & 0 & \ dots & 0 & 1 \\ - P_ {n} ( x) & - P_ {n-1} (x) & \ dots & -P_ {2} (x) & - P_ {1} (x) \\\ end {matrix}} \ right)}  

Wronskians of the original equation and the system coincide, and the trace of the matrixA(x) {\ displaystyle A (x)}   is equal to-Pone(x) {\ displaystyle -P_ {1} (x)}   . Substituting into the formula for the system we obtain

W(x)=W(x0)e-∫x0xPone(ζ)dζ{\ displaystyle W (x) = W (x_ {0}) e ^ {- \ int _ {x_ {0}} ^ {x} P_ {1} (\ zeta) d \ zeta}}  

Application of the Liouville-Ostrogradsky formula

Let the solution be knownyone(x) {\ displaystyle y_ {1} (x)}   second-order linear ordinary differential equation, i.e.n=2 {\ displaystyle n = 2}   . Using the Liouville-Ostrogradsky formula, it is possible to find a solution that is linearly independent of ity2(x) {\ displaystyle y_ {2} (x)}   the same system.

We will write the Wronskian:

Ce-∫Pone(x)dx=yoney2′-yone′y2=W.{\ displaystyle Ce ^ {- \ int P_ {1} (x) dx} = y_ {1} y_ {2} '- y_ {1}' y_ {2} = W.}  

Wyone2=yoney2′-yone′y2yone2=(y2yone)′,{\ displaystyle {\ frac {W} {y_ {1} ^ {2}}} = {\ frac {y_ {1} y_ {2} '- y_ {1}' y_ {2}} {y_ {1} ^ {2}}} = \ left ({\ frac {y_ {2}} {y_ {1}}} \ right) ',}   so

y2yone=∫Wyone2dx+B{\ displaystyle {\ frac {y_ {2}} {y_ {1}}} = \ int {\ frac {W} {y_ {1} ^ {2}}} dx + B}  ⟶y2=yone(∫Wyone2dx+B)=yone∫Ce-∫Pone(x)dxyone2dx+Byone {\ displaystyle \ longrightarrow y_ {2} = y_ {1} \ left (\ int {\ frac {W} {y_ {1} ^ {2}}} dx + B \ right) = y_ {1} \ int { \ frac {Ce ^ {- \ int P_ {1} (x) dx}} {y_ {1} ^ {2}}} dx + By_ {1}}  

Since for linear independenceyone(x) {\ displaystyle y_ {1} (x)}   andy2(x) {\ displaystyle y_ {2} (x)}   enoughW≠0 {\ displaystyle W \ neq 0}   by acceptingC=one,B=0 {\ displaystyle C = 1, \, B = 0}   we gety2=yone∫e-∫Pone(x)dxyone2dx. {\ displaystyle y_ {2} = y_ {1} \ int {\ frac {e ^ {- \ int P_ {1} (x) dx}} {y_ {1} ^ {2}}} dx.}  

Example

Let in the equationy″-tg⁡xy′+2y=0 {\ displaystyle y '' - \ mathop {\ rm {tg}} x \, y '+ 2y = 0}   private solution is knownyone=sin⁡x {\ displaystyle y_ {1} = \ sin x}   . Using the Liouville-Ostrogradsky formula, we get

y2=sin⁡x∫dxsin2⁡xe-∫tan⁡xdx=sin⁡xln⁡|tan⁡x+onecos⁡x|-one.{\ displaystyle y_ {2} = \ sin x \ int {\ frac {dx} {\ sin ^ {2} xe ^ {- \ int \ tan xdx}}} = \ sin x \, \ ln \ left | \ tan x + {\ frac {1} {\ cos x}} \ right | \, - 1.}  

Then the general solution of the homogeneous equationy=Cone(sin⁡xln⁡|tan⁡x+onecos⁡x|-one)+C2sin⁡x {\ displaystyle y = C_ {1} \ left (\ sin x \, \ ln \ left | \ tan x + {\ frac {1} {\ cos x}} \ right | \, - 1 \ right) + C_ { 2} \ sin x}  

References used

  • Agafonov S.A., German A.D., Muratova T.V. Differential equations. Textbook for high schools - M. Publishing House of MSTU. Bauman, 1999 .-- 336 p. (Mathematics Series at Technical University; Issue VIII), Chapter 5 paragraph 2.
  • Romanko V.K. Course of differential equations and calculus of variations. - 2nd ed. - M.: Laboratory of Basic Knowledge, 2001 .-- 344 p.
Source - https://ru.wikipedia.org/w/index.php?title= Liouville Formula_— Ostrogradsky&oldid = 99879022


More articles:

  • Karpov, Vladimir Nikolaevich
  • Syuryosh, Matthias
  • Beijing's Sixth Ring Road
  • Melnikov-Razvedenkov, Nikolai Fedotovich
  • Flag of the urban settlement Mytishchi
  • Mordovian vulgaris
  • Guys and Dolls
  • Iceland Spar
  • Small Masons
  • Smena-7

All articles

Clever Geek | 2019