Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Posin

Posin is an extension of the concept of a polynomial , as the sum of monomials , with the help of an extension of the concept of a monomial. From the properties of such generalized monomials, there follows a restriction of the domain of the function defined by the posinom to strictly positive values.

Content

  • 1 Definition
  • 2 Example
  • 3 Properties
  • 4 Applications
  • 5 notes
  • 6 Literature

Definition

Posin is a generalized polynomial of the form:

g(x)=βˆ‘i=onenui(x)=βˆ‘i=onenci∏j=onemxjaij,xj>0,ci>0,aij∈R.{\ displaystyle g (x) = \ sum \ limits _ {i = 1} ^ {n} u_ {i} (x) = \ sum \ limits _ {i = 1} ^ {n} c_ {i} \ prod \ limits _ {j = 1} ^ {m} {x_ {j}} ^ {a_ {ij}}, \ quad x_ {j}> 0, \ c_ {i}> 0, \ a_ {ij} \ in \ mathbb {R}.}   [1]

Whereui(x),i=one,nΒ― {\ displaystyle u_ {i} (x), \ i = {\ overline {1, n}}}   - monomials .

Example

g(x)=0.25xfour+x-1.5+2x9.{\ displaystyle g (x) = 0.25x ^ {4} + x ^ {- 1.5} + 2x ^ {9}.}  

Properties

  • ifg(x) {\ displaystyle g (x)}   - posin,Ξ»>0 {\ displaystyle \ lambda> 0}   Is a constant thenΞ»g(x) {\ displaystyle \ lambda g (x)}   - posin,
  • iff(x),g(x) {\ displaystyle f (x), g (x)}   - posinomas thenf(x)+g(x) {\ displaystyle f (x) + g (x)}   - also posin,
  • iff(x),g(x) {\ displaystyle f (x), g (x)}   - posinomas thenf(x)g(x) {\ displaystyle f (x) g (x)}   - also posin.

Thus, the set of posinom is, like the set of polynomials, a ring .

Since monomials are a special case of pozinom, the set of pozinom is also an algebra over a polynomial ring.

  • ifg(x) {\ displaystyle g (x)}   - posin,u(x) {\ displaystyle u (x)}   - monom , theng(x)/u(x) {\ displaystyle g (x) / u (x)}   - posin,
  • ifg(x) {\ displaystyle g (x)}   - posin, theng(x)k(k>0, {\ displaystyle {g (x)} ^ {k} \ (k> 0,}   whole) {\ displaystyle)}   - posin.

Applications

Posynomials are a basic concept in geometric programming . With the help of pozinom, problems from a wide range of mathematical problems are described and solved, in particular, it relates to: optimal planning, optimal management, economic problems and risk calculation, coding, etc.

Notes

  1. ↑ Geometric programming, 1972 , p. 12.

Literature

  • R. Duffin, E. Peterson, C. Zener. Geometric programming. - M .: Mir, 1972.- 311 p.


Source - https://ru.wikipedia.org/w/index.php?title=Pozinom &oldid = 82291948


More articles:

  • Lesteva
  • Rossellini, Isabella
  • Tokat
  • Telles de Menezes, Leonora
  • Pyrimidine bases
  • Zhelyabovka
  • Reichskommissariat Turkestan
  • Kotlankin
  • Pearl (village)
  • Red Draftswoman

All articles

Clever Geek | 2019