Clever Geek Handbook
📜 ⬆️ ⬇️

Second order logic

Second-order logic in mathematical logic is a formal system that extends first-order logic [1] with the possibility of quantifying generality and existence not only over variables, but also over predicates . Second-order logic is not reducible to first-order logic. In turn, it is expanded by higher order logic and type theory .

Content

  • 1 Language and Syntax
  • 2 Axiomatics and proof of formulas
  • 3 Semantics
  • 4 Properties
  • 5 notes
  • 6 Literature

Language and Syntax

Formal languages of second-order logic are built on the basis of many functional symbolsF {\ displaystyle {\ mathcal {F}}}   and many predicate charactersP {\ displaystyle {\ mathcal {P}}}   . Arity (the number of arguments) is associated with each functional and predicate symbol. Additional characters are also used.

  • Symbols of individual variables, usuallyx,y,z,xone,yone,zone,x2,y2,z2 {\ displaystyle \ x, y, z, x_ {1}, y_ {1}, z_ {1}, x_ {2}, y_ {2}, z_ {2}}   etc.
  • Function Variable SymbolsF,G,H,Fone,Gone,Hone,F2,G2,H2 {\ displaystyle \ F, G, H, F_ {1}, G_ {1}, H_ {1}, F_ {2}, G_ {2}, H_ {2}}   and so on. Each functional variable corresponds to a certain positive number — the arity of the function.
  • Symbols of predicate variablesP,R,S,Pone,Rone,Sone,P2,R2,S2 {\ displaystyle \ P, R, S, P_ {1}, R_ {1}, S_ {1}, P_ {2}, R_ {2}, S_ {2}}   etc. Each predicate variable corresponds to a certain positive number - the arity of the predicate.
  • Positional Relations:∨,∧,¬,→ {\ displaystyle \ lor, \ land, \ neg, \ to}   ,
  • Community quantifiers∀ {\ displaystyle \ forall}   and existence∃ {\ displaystyle \ exists}   ,
  • Service characters: brackets and comma.

Listed characters along with charactersP {\ displaystyle {\ mathcal {P}}}   andF {\ displaystyle {\ mathcal {F}}}   form the alphabet of first-order logic. More complex constructions are defined inductively .

  • A term is a symbol of an individual variable, or an expression that has the formf(tone,...,tn) {\ displaystyle \ f (t_ {1}, \ ldots, t_ {n})}   wheref {\ displaystyle \ f}   - a functional symbol of arityn {\ displaystyle \ n}   , buttone,...,tn {\ displaystyle \ t_ {1}, \ ldots, t_ {n}}   - terms or expression of the formF(tone,...,tn) {\ displaystyle \ F (t_ {1}, \ ldots, t_ {n})}   whereF {\ displaystyle \ F}   - functional variable arityn {\ displaystyle \ n}   , buttone,...,tn {\ displaystyle \ t_ {1}, \ ldots, t_ {n}}   - terms.
  • Atom - has the formp(tone,...,tn) {\ displaystyle \ p (t_ {1}, \ ldots, t_ {n})}   wherep {\ displaystyle p}   - predicate symbol of arityn {\ displaystyle \ n}   , buttone,...,tn {\ displaystyle \ t_ {1}, \ ldots, t_ {n}}   - terms orP(tone,...,tn) {\ displaystyle \ P (t_ {1}, \ ldots, t_ {n})}   whereP {\ displaystyle P}   - predicate variable arityn {\ displaystyle \ n}   , buttone,...,tn {\ displaystyle \ t_ {1}, \ ldots, t_ {n}}   - terms.
  • A formula is either an atom or one of the following constructions:¬A,(Aone∨A2),(Aone∧A2),(Aone→A2),∀xA,∃xA,∀FA,∃FA,∀PA,∃PA {\ displaystyle \ neg A, (A_ {1} \ lor A_ {2}), (A_ {1} \ land A_ {2}), (A_ {1} \ to A_ {2}), \ forall xA, \ exists xA, \ forall FA, \ exists FA, \ forall PA, \ exists PA}   whereA,Aone,A2 {\ displaystyle \ A, A_ {1}, A_ {2}}   - formulas, andx,F,P {\ displaystyle \ x, F, P}   - individual, functional and predicate variables.

Axiomatics and proof of formulas

Semantics

In classical logic, the interpretation of second-order logic formulas is given on a second-order model, which is determined by the following data.

  • Base setD {\ displaystyle {\ mathcal {D}}}   ,
  • Semantic functionσ {\ displaystyle \ sigma}   which displays
    • everyonen {\ displaystyle n}   -ar functional symbolf {\ displaystyle f}   ofF {\ displaystyle {\ mathcal {F}}}   atn {\ displaystyle n}   -ary functionσ(f):D×...×D→D {\ displaystyle \ sigma (f): {\ mathcal {D}} \ times \ ldots \ times {\ mathcal {D}} \ rightarrow {\ mathcal {D}}}   ,
    • everyonen {\ displaystyle n}   -ar predicate symbolp {\ displaystyle p}   ofP {\ displaystyle {\ mathcal {P}}}   atn {\ displaystyle n}   -ary relationshipσ(p)⊆D×...×D {\ displaystyle \ sigma (p) \ subseteq {\ mathcal {D}} \ times \ ldots \ times {\ mathcal {D}}}   .

Properties

Unlike first-order logic, second-order logic does not have the properties of completeness and compactness . Also in this logic is the statement of the Lowenheim-Skulem theorem .

Notes

  1. ↑ Shapiro (1991) and Hinman (2005) give complete introductions to the subject, with full definitions.

Literature

  1. Henkin, L. (1950). "Completeness in the theory of types." Journal of Symbolic Logic 15 (2): 81-91.
  2. Hinman, P. (2005). Fundamentals of Mathematical Logic. AK Peters. ISBN 1-56881-262-0 .
  3. Shapiro, S. (2000). Foundations without Foundationalism: A Case for Second-order Logic. Oxford University Press. ISBN 0-19-825029-0 .
  4. Rossberg, M. (2004). "First-Order Logic, Second-Order Logic, and Completeness." in V. Hendricks et al., eds .. First-order logic revisited. Berlin: Logos-Verlag.
  5. Vaananen, J. (2001). "Second-Order Logic and Foundations of Mathematics." Bulletin of Symbolic Logic 7 (4): 504-520.


Source - https://ru.wikipedia.org/w/index.php?title=Second_Logic&oldid=101221443


More articles:

  • Serdyuk, Alexander Alekseevich
  • Levenstern, Vladimir Ivanovich
  • Sedge Bird-Wing
  • Burchard of Ursberg
  • Vulvodynia
  • Shatalov, Yuri Grigoryevich (hockey player)
  • USS Indianapolis (CA-35)
  • Niederhnuber, Barbara
  • Shotgun
  • Nightingale (tributary Upa)

All articles

Clever Geek | 2019