Clever Geek Handbook
📜 ⬆️ ⬇️

Redlich - Kwong equation of state

Equation of state
Thermodynamics navigation image.svg
The article is part of the Thermodynamics series.
The ideal gas equation of state
Van der Waals equation
Berthelot's equation
Diterichi equation
Beatty-Bridgman Equation
Redlich - Kwong equation of state
Peng - Robinson equation of state
Barner-Adler equation of state
Sugi's equation of state - Liu
Equation of state Benedict - Webb - Rubin
The equation of state of Lee - Erbar - Edmister
Mi - Gruneisen equation of state
Sections of thermodynamics
The beginnings of thermodynamics
Equation of state
Thermodynamic quantities
Thermodynamic potentials
Thermodynamic cycles
Phase transitions
See also “Physical Portal”

The Redlich – Kwong equation of state is a two-parameter equation of state for a real gas obtained by O. Redlich ( Eng. O. Redlich ) and J. Kwong ( Eng. JNS Kwong ) in 1949 as an improvement of the Van der Waals equation [1] . At the same time, Otto Redlich in his article [2] of 1975 writes that the equation is not based on theoretical justification, but is essentially a successful empirical modification of previously known equations.

The equation has the form:

P=RTV-b-aT0,fiveV(V+b),{\ displaystyle P = {\ frac {RT} {Vb}} - {\ frac {a} {T ^ {0 {,} 5} V (V + b)}},} {\ displaystyle P = {\ frac {RT} {V-b}} - {\ frac {a} {T ^ {0 {,} 5} V (V + b)}},}

WhereP {\ displaystyle P} P - pressure , Pa;

  • T{\ displaystyle T} T - absolute temperature , K;
  • V{\ displaystyle V} V - molar volume , m³ / mol;
  • R=8,31441±0,00026{\ displaystyle R = 8 {,} 31441 \ pm 0 {,} 00026} {\ displaystyle R = 8 {,} 31441 \ pm 0 {,} 00026} - universal gas constant , J / (mol · K);
  • a{\ displaystyle a} a andb {\ displaystyle b} b - some constants depending on a specific substance.

From the conditions of thermodynamic stability at a critical point -(dTdV)Tk=0 {\ displaystyle \ left ({\ frac {dT} {dV}} \ right) _ {T _ {\ mathrm {k}}} = 0} {\ displaystyle \ left ({\ frac {dT} {dV}} \ right) _ {T _ {\ mathrm {k}}} = 0} and(d2TdV2)Tk=0 {\ displaystyle \ left ({\ frac {d ^ {2} T} {dV ^ {2}}} \ right) _ {T _ {\ mathrm {k}}} = 0} {\ displaystyle \ left ({\ frac {d ^ {2} T} {dV ^ {2}}} \ right) _ {T _ {\ mathrm {k}}} = 0} (Tk {\ displaystyle T _ {\ mathrm {k}}} {\ displaystyle T _ {\ mathrm {k}}} - critical temperature ) - you can get that:

a=one9⋅(23-one)R2Tk2,fivePk≈0.42748R2Tk2,fivePk,{\ displaystyle a = {\ frac {1} {9 \ cdot ({\ sqrt [{3}] {2}} - 1)}} {\ frac {R ^ {2} T _ {\ mathrm {k}} ^ {2 {,} 5}} {P _ {\ mathrm {k}}}} approx {\ frac {0 {,} 42748R ^ {2} T _ {\ mathrm {k}} ^ {2 {,} 5 }} {P _ {\ mathrm {k}}}},} {\ displaystyle a = {\ frac {1} {9 \ cdot ({\ sqrt [{3}] {2}} - 1)}} {\ frac {R ^ {2} T _ {\ mathrm {k}} ^ {2 {,} 5}} {P _ {\ mathrm {k}}}} approx {\ frac {0 {,} 42748R ^ {2} T _ {\ mathrm {k}} ^ {2 {,} 5 }} {P _ {\ mathrm {k}}}},}
b=23-one3RTkPk≈0,08664RTkPk,{\ displaystyle b = {\ frac {{\ sqrt [{3}] {2}} - 1} {3}} {\ frac {RT _ {\ mathrm {k}}} {P _ {\ mathrm {k}} }} \ approx {\ frac {0 {,} 08664RT _ {\ mathrm {k}}} {P _ {\ mathrm {k}}}},} {\ displaystyle b = {\ frac {{\ sqrt [{3}] {2}} - 1} {3}} {\ frac {RT _ {\ mathrm {k}}} {P _ {\ mathrm {k}} }} \ approx {\ frac {0 {,} 08664RT _ {\ mathrm {k}}} {P _ {\ mathrm {k}}}},}

WherePk {\ displaystyle P _ {\ mathrm {k}}} {\ displaystyle P _ {\ mathrm {k}}} - critical pressure .

It is of interest to solve the Redlich - Kwong equation with respect to the compressibility coefficientZ=PVRT {\ displaystyle Z = {\ frac {PV} {RT}}} {\ displaystyle Z = {\ frac {PV} {RT}}} . In this case, we have the cubic equation:

Z3-Z2+(A-B2-B)Z-AB=0,{\ displaystyle Z ^ {3} -Z ^ {2} + (AB ^ {2} -B) Z-AB = 0,} {\ displaystyle Z ^ {3} -Z ^ {2} + (A-B ^ {2} -B) Z-AB = 0,}

WhereA=aPR2T2,five,B=bPRT {\ displaystyle A = {\ frac {aP} {R ^ {2} T ^ {2 {,} 5}}}, \; B = {\ frac {bP} {RT}}} {\ displaystyle A = {\ frac {aP} {R ^ {2} T ^ {2 {,} 5}}}, \; B = {\ frac {bP} {RT}}} .

The Redlich - Kwong equation is applicable if the conditionPPk<0,fiveTTk {\ displaystyle {\ frac {P} {P _ {\ mathrm {k}}}} <0 {,} 5 {\ frac {T} {T _ {\ mathrm {k}}}}} {\ displaystyle {\ frac {P} {P _ {\ mathrm {k}}}} <0 {,} 5 {\ frac {T} {T _ {\ mathrm {k}}}}} .

After 1949, several generalizations and modifications of the Redlich – Kwong equation were obtained (see below), however, as A. Bjerre and T. Bak showed [3], the original equation more accurately describes the behavior of gases.

Gray - Rent - Zudkevich Modification

R. Gray ( RD Gray, Jr. ), N. Rent ( NH Rent ) and D. Zudkevich proposed [4] to adjust the compressibility factorZRK {\ displaystyle Z _ {\ mathrm {RK}}}   obtained from the cubic Redlich - Kwong equation by introducing a correction termΔZ {\ displaystyle \ Delta Z}   :

Z′=ZRK+ΔZ,{\ displaystyle Z '= Z _ {\ mathrm {RK}} + \ Delta Z,}  

WhereZ′ {\ displaystyle Z '}   - modified compressibility factor;

ΔZ=-0,04666626Tr2Pr2exp⁡[-7000(one-Tr)2-770(one,02-Pr)2]-{\ displaystyle \ Delta Z = -0 {,} 04666626T _ {\ mathrm {r}} ^ {2} P _ {\ mathrm {r}} ^ {2} \ exp [-7000 (1-T _ {\ mathrm {r }}) ^ {2} -770 (1 {,} 02-P _ {\ mathrm {r}}) ^ {2}] \, -}  
-ω(0.464419-0.424568Tr2)PrTrfour+Prfour-ω(41,76451266-40,47298767Tr)Pr2(one+Tr)four+Pr four -{\ displaystyle - \, \ omega (0 {,} 464419-0 {,} 424568T _ {\ mathrm {r}} ^ {2}) {\ frac {P _ {\ mathrm {r}}} {T _ {\ mathrm {r}} ^ {4} + P _ {\ mathrm {r}} ^ {4}}} \, - \, \ omega (41 {,} 76451266-40 {,} 47298767T _ {\ mathrm {r}}) {\ frac {P _ {\ mathrm {r}} ^ {2}} {(1 + T _ {\ mathrm {r}}) ^ {4} + P _ {\ mathrm {r}} ^ {4}}} \ , -}  
-[0.11386032-ω(12,55135462-12,5583112Tr)]Pr3(one+Tr)four+Prfour,{\ displaystyle - \, [0 {,} 11386032- \ omega (12 {,} 55135462-12 {,} 5583112T _ {\ mathrm {r}}]] {\ frac {P _ {\ mathrm {r}} ^ { 3}} {(1 + T _ {\ mathrm {r}}) ^ {4} + P _ {\ mathrm {r}} ^ {4}}},}  

WhereTr=TTk {\ displaystyle T _ {\ mathrm {r}} = {\ frac {T} {T _ {\ mathrm {k}}}}}   - reduced temperaturePr=PPk {\ displaystyle P _ {\ mathrm {r}} = {\ frac {P} {P _ {\ mathrm {k}}}}}   - reduced pressureω {\ displaystyle \ omega}   - the factor of acentricity .

Gray and others modification obtained forTr<one,one {\ displaystyle T _ {\ mathrm {r}} <1 {,} 1}   andPr⩽2,0 {\ displaystyle P _ {\ mathrm {r}} \ leqslant 2 {,} 0}   .

Other Modifications

Another way to obtain modifications of the original Redlich - Kwong equation of state is to write it in the form:

Z=VV-b-one3(23-one)2bV+bF(ω,Tr),{\ displaystyle Z = {\ frac {V} {Vb}} - {\ frac {1} {3 ({\ sqrt [{3}] {2}} - 1) ^ {2}}} {\ frac { b} {V + b}} F (\ omega, \; T _ {\ mathrm {r}}),}  

WhereF(ω,Tr) {\ displaystyle F (\ omega, \; T _ {\ mathrm {r}})}   - modifying function.

For the Redlich - Kwong equation itselfF(ω,Tr)=F(Tr)=Tr-one,five {\ displaystyle F (\ omega, \; T _ {\ mathrm {r}}) = F (T _ {\ mathrm {r}}) = T _ {\ mathrm {r}} ^ {- 1 {,} 5}}   .

Wilson Modification

G. Wilson [5] [6] ( GM Wilson ) modifying function has the form:

F(ω,Tr)=one+(one,57+one,62ω)(oneTr-one).{\ displaystyle F (\ omega, \; T _ {\ mathrm {r}}) = 1+ (1 {,} 57 + 1 {,} 62 \ omega) \ left ({\ frac {1} {T _ {\ mathrm {r}}}} - 1 \ right).}  

Wilson showed that his form of the equation gives good results on corrections to the enthalpy of pressure not only for polar (including ammonia ), but also for non-polar substances .

Barnet King Modification

Barnet [7] ( FJ Barnès ), and later King [8] ( CJ King ) proposed the following modification in 1973–74:

F(ω,Tr)=one+(0,9+one,21ω)(Tr-one,five-one).{\ displaystyle F (\ omega, \; T _ {\ mathrm {r}}) = 1+ (0 {,} 9 + 1 {,} 21 \ omega) (T _ {\ mathrm {r}} ^ {- 1 {,} 5} -1).}  

Barnet and King also applied their modification to mixtures of both hydrocarbons and non-hydrocarbons.

Soave Modification

G. Soave was proposed [9] the following equation:

F(ω,Tr)=oneTr[one+(0.480+1,574ω-0.176ω2)(one-Tr0,five)]2.{\ displaystyle F (\ omega, \; T _ {\ mathrm {r}}) = {\ frac {1} {T _ {\ mathrm {r}}} [1+ (0 {,} 480 + 1 {, } 574 \ omega -0 {,} 176 \ omega ^ {2}) (1-T _ {\ mathrm {r}} ^ {0 {,} 5})] ^ {2}.}  

For hydrogen , a simpler equation was obtained:

F(ω,Tr)=F(Tr)=1,202exp⁡(-0.30288Tr).{\ displaystyle F (\ omega, \; T _ {\ mathrm {r}}) = F (T _ {\ mathrm {r}}) = 1 {,} 202 \ exp (-0 {,} 30288T _ {\ mathrm { r}}).}  

West ( EW West ) and Erbar ( JH Erbar ), using the Soave equation for light hydrocarbon systems, came to the conclusion [10] that it is very accurate in determining the parameters of the vapor – liquid phase equilibrium and corrections to the pressure enthalpy.

Literature

  • Reed R., Prausnits J., Sherwood T. Properties of gases and liquids: a Reference manual / Per. from English under the editorship of B.I.Sokolova. - 3rd ed. - L .: Chemistry, 1982. - 592 p.
  • Wales S. Phase equilibrium in chemical technology: In 2 hours. Part 1. - M .: Mir, 1989. - 304 p. - ISBN 5-03-001106-4 . .

Notes

  1. ↑ Redlich O., Kwong JNS On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions // Chemical Reviews. - 1949. - T. 44 , No. 1 . - S. 233–244 . (inaccessible link)
  2. ↑ Redlich O. On the Three-Parameter Representation of the Equation of State // Industrial and Engineering Chemistry Fundamentals. - 1975.- T. 14 , no. 3 . - S. 257-260 .
  3. ↑ Bjerre A., Bak TA Two-Parameter Equations of State // Acta Chemica Scandinavica. - 1969 .-- T. 23 . - S. 1733-1744 .
  4. ↑ Gray RD, Jr., Rent NH and Zudkevitch D. A modified Redlich - Kwong equation of state // The American Institute of Chemical Engineers Journal. - 1970. - T. 16 , no. 6 . - S. 991-998 . (inaccessible link)
  5. ↑ Wilson GM // Advances in Cryogenic Engineering. - 1964 .-- T. 9 . - S. 168 .
  6. ↑ Wilson GM // Advances in Cryogenic Engineering. - 1966. - T. 11 . - S. 392 .
  7. ↑ Barnès FJ Ph. D. thesis. Department of Chemical Engineering, University of California, Berkeley, 1973.
  8. ↑ King CJ Personal communication, 1974.
  9. ↑ Soave G. Equilibrium constants from a modified Redlich - Kwong equation of state // Chemical Engineering Science. - 1972. - T. 27 , no. 6 . - S. 1197-1203 .
  10. ↑ West EW, Erbar JH An Evaluation of Four Methods of Predicting the Thermodynamic Properties of Light Hydrocarbon Systems // Paper presented at 52d Annual Meeting NGPA, Dallas, Tex., March 26-28. - 1972.
Source - https://ru.wikipedia.org/w/index.php?title=Redlich_state_ equation_— Kwong&oldid = 100591591


More articles:

  • Bolshechapurnikovo rural settlement
  • Bennett, Steve
  • SEAT 133
  • The boy on the eve of Bar Mitzvah
  • Sharp Kosva
  • Federico II Gonzaga
  • Hamming (King of Denmark)
  • Algae Forest
  • Nodir Divan Begi Madrasah
  • HIP 57050

All articles

Clever Geek | 2019