Clever Geek Handbook
📜 ⬆️ ⬇️

Designations Steinhaus - Moser

Steinhaus-Moser notation is a very large integer notation method proposed by Hugo Steinhaus and is represented using polygons.

First operations:

  • n in the triangle = n n ;
  • n squared = Triangle-n.svg n - n lies in the triangle n times;
  • n in the pentagon = Square-n.svg n - n is squared n times;

and so on.

Steinhaus himself used only three operations, the latter being designated as n in the circle:

n in a circle = Pentagon-n.svg .

We introduce the notation:M(n,m,p) {\ displaystyle M (n, m, p)} M (n, m, p) - n embedded n times in a p -gon. Then you can define the rules for calculating the values ​​of the Steinghaus - Moser polygons:

  • M(n,one,3)=nn{\ displaystyle M (n, 1,3) = n ^ {n}} M (n, 1,3) = n ^ {n} ,
  • M(n,one,p+one)=M(n,n,p){\ displaystyle M (n, 1, p + 1) = M (n, n, p)} M (n, 1, p + 1) = M (n, n, p) ,
  • M(n,m+one,p)=M(M(n,one,p),m,p){\ displaystyle M (n, m + 1, p) = M (M (n, 1, p), m, p)} M (n, m + 1, p) = M (M (n, 1, p), m, p) .

Respectively,

  • n in the triangle =M(n,one,3) {\ displaystyle M (n, 1,3)} {\ displaystyle M (n, 1,3)} ;
  • n squared =M(n,one,four) {\ displaystyle M (n, 1,4)} {\ displaystyle M (n, 1,4)} ;
  • n in the pentagon =M(n,one,five) {\ displaystyle M (n, 1,5)} {\ displaystyle M (n, 1,5)}

Special Values

Some numbers have special names:

  • mega - 2 in a circle: ② (last 14 digits: ... 93539660742656) orM(2,one,five) {\ displaystyle M (2,1,5)}  
M(2,one,five)=M(2,2,four)=M(M(2,one,four),one,four)=M(M(2,2,3),M(2,2,3),3)==M(M(M(2,one,3),one,3),M(M(2,one,3),one,3),3)=M(M(22,one,3),M(22,one,3),3)==M(fourfour,fourfour,3)=M(256,256,3)=M(256,256,3)≈(256↑)256257{\ displaystyle {\ begin {aligned} M (2,1,5) & = M (2,2,4) = M (M (2,1,4), 1,4) = M (M (2, 2,3), M (2,2,3), 3) = \\ & = M (M (M (2,1,3), 1,3), M (M (2,1,3), 1,3), 3) = M (M (2 ^ {2}, 1,3), M (2 ^ {2}, 1,3), 3) = \\ & = M (4 ^ {4} , 4 ^ {4}, 3) = M (256,256,3) = M (256,256,3) \ approx (256 \ uparrow) ^ {256} 257 \ end {aligned}}}  
  • megiston - 10 in a circle: ⑩ orM(ten,one,five)=M(ten,ten,four) {\ displaystyle M (10,1,5) = M (10,10,4)}  
  • Moser number - 2 in a megagon (polygon with mega sides), i.e.M(2,one,M(2,one,five))=M(2,one,M(256,256,3)) {\ displaystyle M (2,1, M (2,1,5)) = M (2,1, M (256,256,3))}   .

Comparing with the function that determines the Graham number , we can see that mega and megiston are less than g 1 (the so-called "grahal", Grahal), and the brain is located between g 1 and g 2 .

See also

  • Ackerman function

Links

  • Weisstein, Eric W. Steinhaus-Moser's Notation on Wolfram MathWorld .
  • | The last 14 digits of the Mega number
Source - https://ru.wikipedia.org/w/index.php?title=Shteynga_ designations_— Moser_oldid = 99052229


More articles:

  • Crabs
  • Krasnensky District
  • Flag of the rural settlement of Kulikovskoye
  • Daityi
  • Shalyginsky village council (Glukhovsky district)
  • 23rd Infantry Division (Russian Empire)
  • Frespera
  • El Micdadia
  • Vince Neal
  • Streckenbach, Bruno

All articles

Clever Geek | 2019