Clever Geek Handbook
📜 ⬆️ ⬇️

Scaling function

In the theory of bursts, a scaling function is a function satisfying the equation

φ(x)=2∑k∈Zhkφ(2x+k).{\ displaystyle \ varphi (x) = {\ sqrt {2}} \ sum \ limits _ {k \ in \ mathbb {Z}} h_ {k} \ varphi (2x + k).} {\ displaystyle \ varphi (x) = {\ sqrt {2}} \ sum \ limits _ {k \ in \ mathbb {Z}} h_ {k} \ varphi (2x + k).}

This equation is called a two-scale relation or a scaling equation in the time domain . Coefficient Set{hk}k∈Z {\ displaystyle \ {h_ {k} \} _ {k \ in \ mathbb {Z}}} {\ displaystyle \ {h_ {k} \} _ {k \ in \ mathbb {Z}}} called a mask or filter .

Markingm0(ξ)=one2∑k∈Zhke2πinξ {\ displaystyle m_ {0} (\ xi) = {\ frac {1} {\ sqrt {2}}} \ sum \ limits _ {k \ in \ mathbb {Z}} h_ {k} e ^ {2 \ pi in \ xi}} {\ displaystyle m_ {0} (\ xi) = {\ frac {1} {\ sqrt {2}}} \ sum \ limits _ {k \ in \ mathbb {Z}} h_ {k} e ^ {2 \ pi in \ xi}} and applying the Fourier transform to both sides of the scaling equation we get

φ^(ξ)=m0(ξ/2)φ^(ξ/2).{\ displaystyle {\ widehat {\ varphi}} (\ xi) = m_ {0} (\ xi / 2) {\ widehat {\ varphi}} (\ xi / 2).} {\ displaystyle {\ widehat {\ varphi}} (\ xi) = m_ {0} (\ xi / 2) {\ widehat {\ varphi}} (\ xi / 2).}

This equation is called the scaling equation in the frequency domain .

Literature

  • Charles K. Chui, An Introduction to Wavelets , (1992), Academic Press, San Diego, ISBN 0585470901
  • Novikov I. Ya., Protasov V. Yu., Skopina M.A., Splash Theory , (2005), Fizmatlit, Moscow, ISBN 5922106422
Source - https://ru.wikipedia.org/w/index.php?title=Scaling_function&oldid=65763183


More articles:

  • Abhijnana Shakuntala
  • McGuckian, Mary
  • Di Donato, Emily
  • 6th Fighter Aviation Regiment of the North-Western Front
  • Sledgehammer Games
  • Fluke (group)
  • Parishes, Yuri Kondratievich
  • Body Surface Area
  • Schmidt Avenue (Mogilev)
  • Wengler, Maximilian

All articles

Clever Geek | 2019