Clever Geek Handbook
📜 ⬆️ ⬇️

Symmetric group

Cayley graph of the symmetric group S 4
Cayley table of the symmetric group S 3
( permutation matrix multiplication table )

The following six matrix positions are available:
Symmetric group 3; Cayley table; positions.svg The table is asymmetric with respect to the main diagonal, i.e. the group is not abelian.

Symmetric group - the group of all permutations of a given setX {\ displaystyle X} X (i.e. bijectionX→X {\ displaystyle X \ to X} X \ to X ) relative to the operation of the composition .

The symmetric group of the setX {\ displaystyle X} X usually indicatedS(X) {\ displaystyle S (X)} S (x) , ifX={one,2,...,n} {\ displaystyle X = \ {1,2, ..., n \}} X = \ {1,2, ..., n \} thenS(X) {\ displaystyle S (X)} S (x) also denoted bySn {\ displaystyle S_ {n}} S_ {n} . Since for equipotent sets (|X|=|Y| {\ displaystyle | X | = | Y |} | X | = | Y | ) their permutation groups (S(X)≅S(Y) {\ displaystyle S (X) \ cong S (Y)} {\ displaystyle S (X) \ cong S (Y)} ), therefore, for a finite group of ordern {\ displaystyle n} n the group of its permutations is identified withSn {\ displaystyle S_ {n}} S_ {n} .

The neutral element in the symmetric group is the identity permutationid(x)=x {\ displaystyle \ mathrm {id} (x) = x} {\ displaystyle \ mathrm {id} (x) = x} .

Content

  • 1 permutation groups
  • 2 Properties
  • 3 views
  • 4 notes
  • 5 Literature

Permutation Groups

Although usually the group of permutations (or permutations) is called the symmetric group itself, sometimes, especially in English literature, permutation groups of the setX {\ displaystyle X}   called subgroups of a symmetric groupS(X) {\ displaystyle S (X)}   [1] . The degree of the group in this case is called the powerX {\ displaystyle X}   .

Each end groupG {\ displaystyle G}   isomorphic to some subgroup of the groupS(G) {\ displaystyle S (G)}   ( Cayley's theorem ).

Properties

The number of elements of the symmetric group for a finite set is equal to the number of permutations of the elements, that is, the power factorial :|Sn|=n! {\ displaystyle | S_ {n} | = n!}   . Atn⩾3 {\ displaystyle n \ geqslant 3}   symmetric groupSn {\ displaystyle S_ {n}}   non-commutative.

Symmetric groupSn {\ displaystyle S_ {n}}   allows the following task :

⟨σone,σ2,...,σn-one|σi2,(σiσi+one)3,σiσj=σjσiif|i-j|>one⟩{\ displaystyle \ langle \ sigma _ {1}, \ sigma _ {2}, \ dots, \ sigma _ {n-1} | \ sigma _ {i} ^ {2}, (\ sigma _ {i} \ sigma _ {i + 1}) ^ {3}, \ sigma _ {i} \ sigma _ {j} = \ sigma _ {j} \ sigma _ {i} \ {\ text {if}} \ | ij | > 1 \ rangle}   .

We can assume thatσi {\ displaystyle \ sigma _ {i}}   rearrangesi {\ displaystyle i}   andi+one {\ displaystyle i + 1}   . Maximum order of group elementsSn {\ displaystyle S_ {n}}   - Landau function .

GroupsSone,S2,S3,Sfour {\ displaystyle S_ {1}, S_ {2}, S_ {3}, S_ {4}}   solvable whenn⩾5 {\ displaystyle n \ geqslant 5}   symmetric groupSn {\ displaystyle S_ {n}}   is insoluble .

A symmetric group is perfect (that is, the conjugation map is an isomorphism) if and only if its order is different from 2 and 6 ( Hölder's theorem ). Whenn=6 {\ displaystyle n = 6}   GroupS6 {\ displaystyle S_ {6}}   has another . By virtue of this and the previous property, forn⩾3,n≠6 {\ displaystyle n \ geqslant 3, n \ neq 6}   all automorphismsSn {\ displaystyle S_ {n}}   are internal, that is, every automorphismα(x) {\ displaystyle \ alpha (x)}   has the formg-onexg {\ displaystyle g ^ {- 1} xg}   for someg∈Sn {\ displaystyle g \ in S_ {n}}   .

The number of classes of conjugate elements of a symmetric groupSn {\ displaystyle S_ {n}}   equal to the number of partitionsn {\ displaystyle n}   [2] . Many transpositions(12),(23),...,(n-onen) {\ displaystyle (12), (23), ..., (n-1 \ n)}   is the generating setSn {\ displaystyle S_ {n}}   . On the other hand, all these transpositions are generated by just two permutations(12),(12...n) {\ displaystyle (12), (12 ... n)}   so that the minimum number of generators of a symmetric group is two.

The center of the symmetric group is trivial forn⩾3 {\ displaystyle n \ geqslant 3}   . CommutantSn {\ displaystyle S_ {n}}   is an alternating groupAn {\ displaystyle A_ {n}}   ; withn≠four {\ displaystyle n \ neq 4}  An {\ displaystyle A_ {n}}   Is the only nontrivial normal subgroupSn {\ displaystyle S_ {n}}   , butSfour {\ displaystyle S_ {4}}   has another normal subgroup - the Klein quadruple group .

Views

Any subgroupG {\ displaystyle G}   permutation groupsSn {\ displaystyle S_ {n}}   representable by a group of matrices fromSL(n,Z) {\ displaystyle SL (n, \ mathbb {Z})}   , with each permutationπ:i→π(i) {\ displaystyle \ pi: i \ to \ pi (i)}   there corresponds a permutation matrix (a matrix in which all elements in cells(i,π(i)) {\ displaystyle (i, \ pi (i))}   equal to 1, and other elements are equal to zero); e.g. permutation(231) {\ displaystyle (231)}   represented by the following matrix3×3 {\ displaystyle 3 \ times 3}   :

(0one000oneone00){\ displaystyle {\ begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \ end {pmatrix}}}  

A subgroup of such a group, composed of matrices with determinant equal to 1, is isomorphic to an alternating groupAn {\ displaystyle A_ {n}}   .

There are other representations of symmetric groups, for example, the symmetry group (consisting of rotations and reflections) of the dodecahedron is isomorphicS5 {\ displaystyle S_ {5}}   , and the rotation group of the cube is isomorphicSfour {\ displaystyle S_ {4}}   .

Notes

  1. ↑ Aigner M. Combinatorial Theory. M .: Mir, 1982.- 561 p.
  2. ↑ sequence A000041 in OEIS

Literature

  • Vinberg E. B. The course of algebra. - M .: Factorial Press, 2001.
  • Kargapolov M. I, Merzlyakov Yu.I. Fundamentals of group theory. - M .: Science, Fizmatlit, 1982.
  • Kostrikin A. I. Introduction to Algebra. Part III. The main structure. - M. publishing house = Fizmatlit, 2004.
  • Kurosh A.G. Group Theory. - M .: Science, Fizmatlit, 1967.
  • Postnikov M.M. Galois Theory. - M .: Fizmatlit, 1963.
Source - https://ru.wikipedia.org/w/index.php?title=Symmetric_group&oldid=101988823


More articles:

  • Niderkuny
  • AM 748 I 4to
  • NGC 3759A
  • Tyler James Michael
  • Polar Air Cargo
  • Esvatini Flag
  • Instant Acceleration Center
  • NGC 3823-2
  • Pozhnja (Velikopisarevsky district)
  • NGC 3861A

All articles

Clever Geek | 2019