Clever Geek Handbook
📜 ⬆️ ⬇️

Steklov functions

Steklov functions are functions introduced by the Russian mathematician V. A. Steklov (published in 1907) to solve problems associated with representing functions in the form of series in eigenfunctions of the Sturm-Liouville problem .

Let bef {\ displaystyle f} f Is a function integrable on a segment[a,b] {\ displaystyle [a, b]} [a, b] . Then the function

fh(x)=fh,one(x)=oneh∫x-h/2x+h/2f(t)dt=oneh∫-h/2h/2f(x+t)dt{\ displaystyle f_ {h} (x) = f_ {h, 1} (x) = {\ frac {1} {h}} \ int \ limits _ {xh / 2} ^ {x + h / 2} f (t) \, dt = {\ frac {1} {h}} \ int \ limits _ {- h / 2} ^ {h / 2} f (x + t) \, dt} {\ displaystyle f_ {h} (x) = f_ {h, 1} (x) = {\ frac {1} {h}} \ int \ limits _ {xh / 2} ^ {x + h / 2} f (t) \, dt = {\ frac {1} {h}} \ int \ limits _ {- h / 2} ^ {h / 2} f (x + t) \, dt}

called the first order Steklov function forf {\ displaystyle f} f in incrementsh>0 {\ displaystyle h> 0} {\ displaystyle h> 0} .

Induction-defined functions

fh,r(x)=oneh∫x-h/2x+h/2fh,r-one(t)dt,r=2,3,...,{\ displaystyle f_ {h, r} (x) = {\ frac {1} {h}} \ int \ limits _ {xh / 2} ^ {x + h / 2} f_ {h, r-1} ( t) \, dt, \ quad \ r = 2,3, \ ldots,} {\ displaystyle f_ {h, r} (x) = {\ frac {1} {h}} \ int \ limits _ {xh / 2} ^ {x + h / 2} f_ {h, r-1} ( t) \, dt, \ quad \ r = 2,3, \ ldots,}

are called Steklov order functionsr {\ displaystyle r} r forf {\ displaystyle f} f in incrementsh>0 {\ displaystyle h> 0} {\ displaystyle h> 0} .

Properties

  • Functionfh(x) {\ displaystyle f_ {h} (x)}   has a derivative
ddxfh(x)=oneh(f(x+h/2)-f(x-h/2)){\ displaystyle {\ frac {d} {dx}} f_ {h} (x) = {\ frac {1} {h}} {\ Bigl (} f (x + h / 2) -f (xh / 2 ) {\ Bigr)}}  

at almost all points of the segment[a,b] {\ displaystyle [a, b]}   .

  • If af {\ displaystyle f}   is absolutely continuous on the whole material axis, then the following estimates hold:
supx∈(-∞,+∞)|f(x)-fh(x)|≤ωf(h/2),{\ displaystyle \ sup \ limits _ {x \ in (- \ infty, + \ infty)} | f (x) -f_ {h} (x) | \ leq \ omega _ {f} (h / 2), }  
supx∈(-∞,+∞)|ddxfh(x)|≤onehωf(h),{\ displaystyle \ sup \ limits _ {x \ in (- \ infty, + \ infty)} {\ Bigl |} {\ frac {d} {dx}} f_ {h} (x) {\ Bigr |} \ leq {\ frac {1} {h}} \ omega _ {f} (h),}  

Whereωf(⋅) {\ displaystyle \ omega _ {f} (\ cdot)}   - modulus of continuity of the functionf {\ displaystyle f}   .

  • If af∈Lp(-∞,+∞), {\ displaystyle f \ in L ^ {p} (- \ infty, + \ infty),}   then similar inequalities hold in the norm of this space.

Literature

  • Akhiezer, N.I. Lectures on the theory of approximation, - M .: Nauka, 1965.
  • Zhuk V.V., Kuzyutin V.F. Approximation of functions and numerical integration, St. Petersburg: Publishing House of St. Petersburg State University, 1995.

Links

Springer Encyclopaedia of Mathematics.

Source - https://ru.wikipedia.org/w/index.php?title=Steklova_function&oldid=83962243


More articles:

  • Deveci Baddeli
  • Nozdrovsky, Stepan Andreevich
  • NGC 1573A
  • NGC 1796A
  • Kvomtari-Fas languages ​​- Wikipedia
  • NGC 2115A
  • Reis, Philippe
  • Lima, Ildefons
  • Men's Volleyball World Championship 2002 (qualification)
  • Russian Far East

All articles

Clever Geek | 2019