ConclusionThe theorem can be deduced using two Maxwell equations (for simplicity, we assume that the medium is a vacuum (μ = 1, ε = 1); for the general case with an arbitrary medium, we need to assign ε and μ to the formulas for each ε 0 and μ 0 ) :
- {\ displaystyle \ nabla \ times \ mathbf {E} = - {\ frac {\ partial \ mathbf {B}} {\ partial t}}.}
Multiplying both sides of the equation by {\ displaystyle \ mathbf {B}} we get:
- {\ displaystyle \ mathbf {B} \ cdot (\ nabla \ times \ mathbf {E}) = - \ mathbf {B} \ cdot {\ frac {\ partial \ mathbf {B}} {\ partial t}}.}
We first consider the Maxwell-AmpĆØre equation:
- {\ displaystyle \ nabla \ times \ mathbf {B} = \ mu _ {0} \ mathbf {J} + \ varepsilon _ {0} \ mu _ {0} {\ frac {\ partial \ mathbf {E}} { \ partial t}}.}
Multiplying both sides of the equation by {\ displaystyle \ mathbf {E}} we get:
- {\ displaystyle \ mathbf {E} \ cdot (\ nabla \ times \ mathbf {B}) = \ mathbf {E} \ cdot \ mu _ {0} \ mathbf {J} + \ mathbf {E} \ cdot \ varepsilon _ {0} \ mu _ {0} {\ frac {\ partial \ mathbf {E}} {\ partial t}}.}
Subtracting the first from the second, we get:
- {\ displaystyle \ mathbf {E} \ cdot (\ nabla \ times \ mathbf {B}) - \ mathbf {B} \ cdot (\ nabla \ times \ mathbf {E}) = \ mu _ {0} \ mathbf { E} \ cdot \ mathbf {J} + \ varepsilon _ {0} \ mu _ {0} \ mathbf {E} \ cdot {\ frac {\ partial \ mathbf {E}} {\ partial t}} + \ mathbf {B} \ cdot {\ frac {\ partial \ mathbf {B}} {\ partial t}}.}
Finally:
- {\ displaystyle - \ nabla \ cdot \ (\ mathbf {E} \ times \ mathbf {B}) = \ mu _ {0} \ mathbf {E} \ cdot \ mathbf {J} + \ varepsilon _ {0} \ mu _ {0} \ mathbf {E} \ cdot {\ frac {\ partial \ mathbf {E}} {\ partial t}} + \ mathbf {B} \ cdot {\ frac {\ partial \ mathbf {B}} {\ partial t}}.}
Since the Poynting vector {\ displaystyle \ mathbf {S}} defined as:
- {\ displaystyle \ mathbf {S} = {\ frac {1} {\ mu _ {0}}} \ mathbf {E} \ times \ mathbf {B}}
this is equivalent to:
- {\ displaystyle \ nabla \ cdot \ mathbf {S} + \ varepsilon _ {0} \ mathbf {E} \ cdot {\ frac {\ partial \ mathbf {E}} {\ partial t}} + {\ frac {\ mathbf {B}} {\ mu _ {0}}} \ cdot {\ frac {\ partial \ mathbf {B}} {\ partial t}} + \ mathbf {J} \ cdot \ mathbf {E} = 0. }
SummaryThe mechanical energy of the theorem described above
- {\ displaystyle {\ frac {\ partial} {\ partial t}} u_ {m} (\ mathbf {r}, t) + \ nabla \ cdot \ mathbf {S} _ {m} (\ mathbf {r}, t) = \ mathbf {J} (\ mathbf {r}, t) \ cdot \ mathbf {E} (\ mathbf {r}, t),}
where u_m is the kinetic energy of density in the system. It can be described as the sum of the kinetic energy of particles α
- {\ displaystyle u_ {m} (\ mathbf {r}, t) = \ sum _ {\ alpha} {\ frac {m _ {\ alpha}} {2}} {\ dot {r}} _ {\ alpha} ^ {2} \ delta (\ mathbf {r} - \ mathbf {r} _ {\ alpha} (t)),}
{\ displaystyle \ mathbf {S_ {m}}} - energy flow, or āmechanical Poynting vectorā:
- {\ displaystyle \ mathbf {S} _ {m} (\ mathbf {r}, t) = \ sum _ {\ alpha} {\ frac {m _ {\ alpha}} {2}} {\ dot {r}} _ {\ alpha} ^ {2} {\ dot {\ mathbf {r}}} _ {\ alpha} \ delta (\ mathbf {r} - \ mathbf {r} _ {\ alpha} (t)).}
Energy continuity equation or energy conservation law
- {\ displaystyle {\ frac {\ partial} {\ partial t}} \ left (u_ {e} + u_ {m} \ right) + \ nabla \ cdot \ left (\ mathbf {S} _ {e} + \ mathbf {S} _ {m} \ right) = 0,}
Alternative FormsOther forms of Poynting's theorem can be obtained. Instead of using a stream vector {\ displaystyle \ mathbf {S} \ propto \ mathbf {E} \ times \ mathbf {B}} can choose the shape of Abraham {\ displaystyle \ mathbf {E} \ times \ mathbf {H}} Minkowski form {\ displaystyle \ mathbf {D} \ times \ mathbf {B}} , or some other.