Let the electromagnetic field propagating in the direction {\ displaystyle {\ vec {z}}} , and {\ displaystyle \ omega} - cyclic frequency of the harmonic signal.
- {\ displaystyle {\ vec {E}} _ {T}} associated with {\ displaystyle {\ vec {E}} _ {Z}} and {\ displaystyle {\ vec {H}} _ {Z}} the following relation:
| {\ displaystyle {\ vec {E}} _ {T} = {\ frac {- \ gamma \ nabla _ {T} E_ {Z} -j \ omega \ mu _ {0} (\ nabla _ {T} H_ {Z}) \ times {\ vec {z}}} {\ gamma ^ {2} + k_ {0} ^ {2}}}} |
- {\ displaystyle {\ vec {H}} _ {T}} associated with {\ displaystyle {\ vec {E}} _ {Z}} and {\ displaystyle {\ vec {H}} _ {Z}} the following relation:
| {\ displaystyle {\ vec {H}} _ {T} = {\ frac {- \ gamma \ nabla _ {T} H_ {Z} + j \ omega \ varepsilon _ {0} (\ nabla _ {T} E_ {Z}) \ times {\ vec {z}}} {\ gamma ^ {2} + k_ {0} ^ {2}}}} |
Where
- {\ displaystyle \ nabla _ {T}} - transversal Laplace operator ;
- {\ displaystyle k_ {0} = {\ frac {\ omega} {c}};}
- {\ displaystyle \ gamma ^ {2} = k_ {c} ^ {2} -k_ {0} ^ {2};}
- {\ displaystyle \ varepsilon} - dielectric constant ;
- {\ displaystyle \ mu} - magnetic permeability .
When {\ displaystyle {\ vec {E}} _ {Z} = {\ vec {0}}} and {\ displaystyle {\ vec {H}} _ {Z} \ neq {\ vec {0}}} , then the previous formulas take the form:
| {\ displaystyle {\ vec {E}} _ {T} = {\ frac {-j \ omega \ mu _ {0}} {\ gamma ^ {2} + k_ {0} ^ {2}}} (\ nabla _ {T} H_ {Z}) \ times {\ vec {z}}} | {\ displaystyle {\ vec {H}} _ {T} = {\ frac {- \ gamma} {\ gamma ^ {2} + k_ {0} ^ {2}}} \ nabla _ {T} H_ {Z }} |
Hence, {\ displaystyle {\ vec {E}} _ {T} = {\ frac {j \ omega \ mu _ {0}} {\ gamma}} {\ vec {H}} _ {T} \ times {\ vec {z}} = Z_ {m} {\ vec {H}} _ {T} \ times {\ vec {z}}.}
Where: {\ displaystyle Z_ {m} = {\ frac {j \ omega \ mu _ {0}} {\ gamma}}}
This expression is usually written as follows:
| {\ displaystyle {\ vec {H}} _ {T} = {\ frac {{\ vec {z}} \ times {\ vec {E}} _ {T}} {Z_ {m}}}} |
When {\ displaystyle {\ vec {H}} _ {Z} = {\ vec {0}}} and {\ displaystyle {\ vec {E}} _ {Z} \ neq {\ vec {0}}} , then the previous formulas take the form:
| {\ displaystyle {\ vec {E}} _ {T} = {\ frac {- \ gamma} {\ gamma ^ {2} + k_ {0} ^ {2}}} \ nabla _ {T} E_ {Z }} | {\ displaystyle {\ vec {H}} _ {T} = {\ frac {j \ omega \ varepsilon _ {0}} {\ gamma ^ {2} + k_ {0} ^ {2}}} (\ nabla _ {T} E_ {Z}) \ times {\ vec {z}}} |
Hence,
{\ displaystyle {\ vec {H}} _ {T} = {\ frac {{\ vec {z}} \ times {\ vec {E}} _ {T}} {Z_ {m}}},}
Where: {\ displaystyle Z_ {m} = {\ frac {\ gamma} {j \ omega \ varepsilon _ {0}}}}
When {\ displaystyle {\ vec {E}} _ {Z} = {\ vec {H}} _ {Z} = {\ vec {0}}} electromagnetic field propagating in the direction {\ displaystyle {\ vec {z}}} is called transversal .
- In a vacuum {\ displaystyle {\ vec {H}}} associated with {\ displaystyle {\ vec {E}}} the following relation:
| {\ displaystyle {\ vec {H}} = {\ frac {{\ vec {z}} \ times {\ vec {E}}} {Z_ {0}}}} |
Where: {\ displaystyle Z_ {0} = {\ sqrt {\ frac {\ mu _ {0}} {\ varepsilon _ {0}}}}} - vacuum impedance.
Let be {\ displaystyle Z = {\ sqrt {\ frac {\ mu} {\ varepsilon}}} Z_ {0}} - wave resistance of the medium in which the electromagnetic wave propagates in the direction {\ displaystyle \ mathbf {z}} . Insofar as {\ displaystyle Z \ mathbf {H} = \ mathbf {z} \ times \ mathbf {E},}
{\ displaystyle \ mathbf {E} = Z \ mathbf {J},} Where {\ displaystyle \ mathbf {J} = \ mathbf {H} \ times \ mathbf {z}} - "current density".