Clever Geek Handbook
📜 ⬆️ ⬇️

Cross field

Content

  • 1 Equations linking transversal field components( E → T , H → T ) {\ displaystyle ({\ vec {E}} _ {T}, \; {\ vec {H}} _ {T})} {\ displaystyle ({\ vec {E}} _ {T}, \; {\ vec {H}} _ {T})} with components along the direction of radiationE→Z {\ displaystyle {\ vec {E}} _ {Z}} {\ displaystyle {\ vec {E}} _ {Z}} andH→Z {\ displaystyle {\ vec {H}} _ {Z}} {\ displaystyle {\ vec {H}} _ {Z}}
  • 2 Transverse electric field
  • 3 Transverse magnetic field
  • 4 Transverse electromagnetic field
  • 5 Equivalent circuit

Equations linking transversal field components(E→T,H→T) {\ displaystyle ({\ vec {E}} _ {T}, \; {\ vec {H}} _ {T})} {\ displaystyle ({\ vec {E}} _ {T}, \; {\ vec {H}} _ {T})} with components along the direction of radiationE→Z {\ displaystyle {\ vec {E}} _ {Z}} {\ displaystyle {\ vec {E}} _ {Z}} andH→Z {\ displaystyle {\ vec {H}} _ {Z}} {\ displaystyle {\ vec {H}} _ {Z}}

Let the electromagnetic field propagating in the directionz→ {\ displaystyle {\ vec {z}}}   , andω {\ displaystyle \ omega}   - cyclic frequency of the harmonic signal.

  • E→T{\ displaystyle {\ vec {E}} _ {T}}   associated withE→Z {\ displaystyle {\ vec {E}} _ {Z}}   andH→Z {\ displaystyle {\ vec {H}} _ {Z}}   the following relation:
E→T=-γ∇TEZ-jωμ0(∇THZ)×z→γ2+k02{\ displaystyle {\ vec {E}} _ {T} = {\ frac {- \ gamma \ nabla _ {T} E_ {Z} -j \ omega \ mu _ {0} (\ nabla _ {T} H_ {Z}) \ times {\ vec {z}}} {\ gamma ^ {2} + k_ {0} ^ {2}}}}  
  • H→T{\ displaystyle {\ vec {H}} _ {T}}   associated withE→Z {\ displaystyle {\ vec {E}} _ {Z}}   andH→Z {\ displaystyle {\ vec {H}} _ {Z}}   the following relation:
H→T=-γ∇THZ+jωε0(∇TEZ)×z→γ2+k02{\ displaystyle {\ vec {H}} _ {T} = {\ frac {- \ gamma \ nabla _ {T} H_ {Z} + j \ omega \ varepsilon _ {0} (\ nabla _ {T} E_ {Z}) \ times {\ vec {z}}} {\ gamma ^ {2} + k_ {0} ^ {2}}}}  

Where

  • ∇T{\ displaystyle \ nabla _ {T}}   - transversal Laplace operator ;
  • k0=ωc;{\ displaystyle k_ {0} = {\ frac {\ omega} {c}};}  
  • γ2=kc2-k02;{\ displaystyle \ gamma ^ {2} = k_ {c} ^ {2} -k_ {0} ^ {2};}  
  • ε{\ displaystyle \ varepsilon}   - dielectric constant ;
  • μ{\ displaystyle \ mu}   - magnetic permeability .

Transverse Electric Field

WhenE→Z=0→ {\ displaystyle {\ vec {E}} _ {Z} = {\ vec {0}}}   andH→Z≠0→ {\ displaystyle {\ vec {H}} _ {Z} \ neq {\ vec {0}}}   , then the previous formulas take the form:

E→T=-jωμ0γ2+k02(∇THZ)×z→{\ displaystyle {\ vec {E}} _ {T} = {\ frac {-j \ omega \ mu _ {0}} {\ gamma ^ {2} + k_ {0} ^ {2}}} (\ nabla _ {T} H_ {Z}) \ times {\ vec {z}}}  H→T=-γγ2+k02∇THZ{\ displaystyle {\ vec {H}} _ {T} = {\ frac {- \ gamma} {\ gamma ^ {2} + k_ {0} ^ {2}}} \ nabla _ {T} H_ {Z }}  

Hence,E→T=jωμ0γH→T×z→=ZmH→T×z→. {\ displaystyle {\ vec {E}} _ {T} = {\ frac {j \ omega \ mu _ {0}} {\ gamma}} {\ vec {H}} _ {T} \ times {\ vec {z}} = Z_ {m} {\ vec {H}} _ {T} \ times {\ vec {z}}.}  
Where:Zm=jωμ0γ {\ displaystyle Z_ {m} = {\ frac {j \ omega \ mu _ {0}} {\ gamma}}}  
This expression is usually written as follows:

H→T=z→×E→TZm{\ displaystyle {\ vec {H}} _ {T} = {\ frac {{\ vec {z}} \ times {\ vec {E}} _ {T}} {Z_ {m}}}}  

Transverse Magnetic Field

WhenH→Z=0→ {\ displaystyle {\ vec {H}} _ {Z} = {\ vec {0}}}   andE→Z≠0→ {\ displaystyle {\ vec {E}} _ {Z} \ neq {\ vec {0}}}   , then the previous formulas take the form:

E→T=-γγ2+k02∇TEZ{\ displaystyle {\ vec {E}} _ {T} = {\ frac {- \ gamma} {\ gamma ^ {2} + k_ {0} ^ {2}}} \ nabla _ {T} E_ {Z }}  H→T=jωε0γ2+k02(∇TEZ)×z→{\ displaystyle {\ vec {H}} _ {T} = {\ frac {j \ omega \ varepsilon _ {0}} {\ gamma ^ {2} + k_ {0} ^ {2}}} (\ nabla _ {T} E_ {Z}) \ times {\ vec {z}}}  

Hence,
H→T=z→×E→TZm,{\ displaystyle {\ vec {H}} _ {T} = {\ frac {{\ vec {z}} \ times {\ vec {E}} _ {T}} {Z_ {m}}},}  
Where:Zm=γjωε0 {\ displaystyle Z_ {m} = {\ frac {\ gamma} {j \ omega \ varepsilon _ {0}}}}  

Transverse electromagnetic field

WhenE→Z=H→Z=0→ {\ displaystyle {\ vec {E}} _ {Z} = {\ vec {H}} _ {Z} = {\ vec {0}}}   electromagnetic field propagating in the directionz→ {\ displaystyle {\ vec {z}}}   is called transversal .

In a vacuumH→ {\ displaystyle {\ vec {H}}}   associated withE→ {\ displaystyle {\ vec {E}}}   the following relation:
H→=z→×E→Z0{\ displaystyle {\ vec {H}} = {\ frac {{\ vec {z}} \ times {\ vec {E}}} {Z_ {0}}}}  

Where:Z0=μ0ε0 {\ displaystyle Z_ {0} = {\ sqrt {\ frac {\ mu _ {0}} {\ varepsilon _ {0}}}}}   - vacuum impedance.

Equivalent circuit

 
Equivalent circuit

Let beZ=μεZ0 {\ displaystyle Z = {\ sqrt {\ frac {\ mu} {\ varepsilon}}} Z_ {0}}   - wave resistance of the medium in which the electromagnetic wave propagates in the directionz {\ displaystyle \ mathbf {z}}   . Insofar asZH=z×E, {\ displaystyle Z \ mathbf {H} = \ mathbf {z} \ times \ mathbf {E},}  
E=ZJ,{\ displaystyle \ mathbf {E} = Z \ mathbf {J},}   WhereJ=H×z {\ displaystyle \ mathbf {J} = \ mathbf {H} \ times \ mathbf {z}}   - "current density".

Source - https://ru.wikipedia.org/w/index.php?title=Cross_field&oldid=83793590


More articles:

  • River (Zernograd district)
  • Yilmaz, Mesut
  • Rural settlement Medvezhye-Ozyorskoye
  • Chokh
  • Tagansky Park (Yekaterinburg)
  • Stationery
  • Tsudahar
  • Legislative Election in Great Britain (1852)
  • Shevelkino
  • Jooven, John

All articles

Clever Geek | 2019