Clever Geek Handbook
📜 ⬆️ ⬇️

First mean theorem

The first mean value theorem is one of the theorems on a definite integral .

Wording

Let the functionf(x) {\ displaystyle f (x)}   integrable on the segment[a;b] {\ displaystyle [a; b]}   , and is limited by numbers on itm {\ displaystyle m}   andM {\ displaystyle M}   so thatm≤f(x)≤M {\ displaystyle m \ leq f (x) \ leq M}   . Then there is such a numberμ {\ displaystyle \ mu}   ,m≤μ≤M {\ displaystyle m \ leq \ mu \ leq M}   , what

∫abf(x)dx=μ(b-a){\ displaystyle \ int \ limits _ {a} ^ {b} f (x) dx = \ mu (ba)}   .

Proof

From inequalitym≤f(x)≤M {\ displaystyle m \ leq f (x) \ leq M}   by the property of the monotonicity of the integral, we have

m(b-a)≤∫abf(x)dx≤M(b-a){\ displaystyle m (ba) \ leq \ int \ limits _ {a} ^ {b} f (x) dx \ leq M (ba)}   .

Markingμ=oneb-a∫abf(x)dx {\ displaystyle \ mu = {\ frac {1} {ba}} \ int _ {a} ^ {b} f (x) dx}   , we obtain the required statement. So certain numberμ {\ displaystyle \ mu}   called the average value of the functionf(x) {\ displaystyle f (x)}   on the segment[a;b] {\ displaystyle [a; b]}   , whence the name of the theorem.

Note

If the functionf(x) {\ displaystyle f (x)}   continuous on[a;b] {\ displaystyle [a; b]}   then asm {\ displaystyle m}   andM {\ displaystyle M}   we can take its largest and smallest values ​​(which, by the Weierstrass theorem , are achieved), then by the well-known theorem there exists such a pointc∈[a;b] {\ displaystyle c \ in [a; b]}   , whatf(c)=μ {\ displaystyle f (c) = \ mu}   , therefore, the statement of the theorem can be rewritten in the form

∫abf(x)dx=f(c)(b-a){\ displaystyle \ int \ limits _ {a} ^ {b} f (x) dx = f (c) (ba)}   .

If we use the Newton-Leibniz formula , then this equality can be written as

F(b)-F(a)=F′(c)(b-a){\ displaystyle F (b) -F (a) = F '(c) \; (ba)}   ,

WhereF(x) {\ displaystyle F (x)}   - antiderivative functionf(x) {\ displaystyle f (x)}   , which is nothing but the Lagrange formula for the functionF(x) {\ displaystyle F (x)}   .

Summary

Let functionsf(x) {\ displaystyle f (x)}   andg(x) {\ displaystyle g (x)}   integrable on the segment[a;b] {\ displaystyle [a; b]}   , and stillm≤f(x)≤M {\ displaystyle m \ leq f (x) \ leq M}   , and the second of them does not change sign (that is, either everywhere is non-negative:g(x)≥0 {\ displaystyle g (x) \ geq 0}   or everywhere positiveg(x)≤0 {\ displaystyle g (x) \ leq 0}   ) Then there is such a numberμ {\ displaystyle \ mu}   ,m≤μ≤M {\ displaystyle m \ leq \ mu \ leq M}   , what

∫abf(x)g(x)dx=μ∫abg(x)dx{\ displaystyle \ int \ limits _ {a} ^ {b} f (x) g (x) dx = \ mu \ int \ limits _ {a} ^ {b} g (x) dx}   .

Proof

Let beg(x) {\ displaystyle g (x)}   non-negative, then we have

mg(x)≤f(x)g(x)≤Mg(x){\ displaystyle mg (x) \ leq f (x) g (x) \ leq Mg (x)}   ,

whence, in view of the monotonicity of the integral

m∫abg(x)dx≤∫abf(x)g(x)dx≤M∫abg(x)dx{\ displaystyle m \ int \ limits _ {a} ^ {b} g (x) dx \ leq \ int \ limits _ {a} ^ {b} f (x) g (x) dx \ leq M \ int \ limits _ {a} ^ {b} g (x) dx}   .

If∫abg(x)dx=0 {\ displaystyle \ int _ {a} ^ {b} g (x) dx = 0}   , then from this inequality it follows that∫abf(x)g(x)dx=0 {\ displaystyle \ int _ {a} ^ {b} f (x) g (x) dx = 0}   , and the statement of the theorem holds for anyμ {\ displaystyle \ mu}   . Otherwise, put

μ=∫abf(x)g(x)dx∫abg(x)dx{\ displaystyle \ mu = {\ frac {\ int \ limits _ {a} ^ {b} f (x) g (x) dx} {\ int \ limits _ {a} ^ {b} g (x) dx }}}   .

The generalization is proved. If the functionf(x) {\ displaystyle f (x)}   continuous, it can be argued that there is a pointc∈[a;b] {\ displaystyle c \ in [a; b]}   such that

∫abf(x)g(x)dx=f(c)∫abg(x)dx{\ displaystyle \ int \ limits _ {a} ^ {b} f (x) g (x) dx = f (c) \ int \ limits _ {a} ^ {b} g (x) dx}  

(similar to the previous one).

Literature

  • Fichtenholtz G. M. The course of differential and integral calculus. - M .: Nauka, 1969 .-- T. II.
  • Zorich V.A. Mathematical analysis. Part I. - M .: Nauka, 1981.
Source - https://ru.wikipedia.org/w/index.php?title=First_the_the_the_the_Medium&oldid=92747872


More articles:

  • Alexandrov, Anatoly Sergeevich
  • Miroclus of Milan
  • Vesyolovsky Village Council (Balakleysky District)
  • Gold Coast Joint Convention
  • Mor, Jay
  • Sunday (1997 film)
  • Rutul
  • Major League KVN 2010
  • Law of Desire
  • A Trick of the Tail

All articles

Clever Geek | 2019