Clever Geek Handbook
📜 ⬆️ ⬇️

The work of Gromov

Gromov's work is the distance at which two geodesics starting at one point begin to diverge significantly.

Named after Gromov .

Gromov’s product is used, in particular, to define a metric on the absolute boundary of a metric space.

Definition

Let a fixed point be fixedx∈X {\ displaystyle x \ in X}   metric space(X,d) {\ displaystyle (X, d)}   . Then, the product of Gromov (relative to the pointx {\ displaystyle x}   ) pointsy {\ displaystyle y}   andz {\ displaystyle z}   this space is called the quantity

(y,z)x: =one2(d(x,y)+d(x,z)-d(y,z)).{\ displaystyle (y, z) _ {x}: = {\ frac {1} {2}} (d (x, y) + d (x, z) -d (y, z)).}  

Properties

  • Gromov's work is non-negative and symmetrical:∀x,y,z∈X(y,z)x=(z,y)x,(y,z)x≥0. {\ displaystyle \ forall x, y, z \ in X \ quad (y, z) _ {x} = (z, y) _ {x}, \ quad (y, z) _ {x} \ geq 0. }  
  • For a tree case,(y,z)x {\ displaystyle (y, z) _ {x}}   there is the length of the coincident part of the geodetic paths[xy] {\ displaystyle [xy]}   and[xz] {\ displaystyle [xz]}   .
  • Forδ {\ displaystyle \ delta}   hyperbolic spaces the inequality holds.
    (x,z)p≥min{(x,y)p,(y,z)p}-δ.{\ displaystyle (x, z) _ {p} \ geq \ min {\ big \ {} (x, y) _ {p}, (y, z) _ {p} {\ big \}} - \ delta .}  

Literature

  • E. Gis, P. De la Arp. Hyperbolic groups according to Mikhail Gromov. - M .: World, 1992.
Source - https://ru.wikipedia.org/w/index.php?title=Gromov's production&oldid = 100140531


More articles:

  • Zagrebin, Lev Vasilievich
  • Embassy of Mongolia in Russia
  • Kenai (river)
  • Vespa tropica
  • Razumovskaya, Sofia Stepanovna
  • ATX
  • Landing on the Sommers Island
  • Bahamas Post and Stamp History
  • Reoviruses
  • Izyaslav Vladimirovich (Prince of Murom)

All articles

Clever Geek | 2019