Clever Geek Handbook
📜 ⬆️ ⬇️

Lognormal distribution

The lognormal distribution in probability theory is a two-parameter family of absolutely continuous distributions . If a random variable has a lognormal distribution, then its logarithm has a normal distribution .

Lognormal
Density graph
μ = 0 Probability Density
Distribution function graph
μ = 0 distribution function
Designationln⁡N(μ,σ2){\ displaystyle \ ln N (\ mu, \ sigma ^ {2})} {\ displaystyle \ ln N (\ mu, \ sigma ^ {2})} ,LN(μ,σ2) {\ displaystyle LN (\ mu, \ sigma ^ {2})} {\ displaystyle LN (\ mu, \ sigma ^ {2})}
Optionsσ>0{\ displaystyle \ sigma> 0} {\ displaystyle \ sigma> 0}
-∞<μ<∞{\ displaystyle - \ infty <\ mu <\ infty} {\ displaystyle - \ infty <\ mu <\ infty}
Carrierx∈(0;+∞){\ displaystyle x \ in (0; + \ infty)} {\ displaystyle x \ in (0; + \ infty)}
Probability densityexp⁡(-[ln⁡(x)-μσ]2/2)/(xσ2π){\ displaystyle \ exp \ left (- \ left. \ left [{\ frac {\ ln (x) - \ mu} {\ sigma}} \ right] ^ {2} \ right / 2 \ right) \ left / \ left (x \ sigma {\ sqrt {2 \ pi}} \ right) \ right.} \ exp \ left (- \ left. \ left [{\ frac {\ ln (x) - \ mu} {\ sigma}} \ right] ^ {2} \ right / 2 \ right) \ left / \ left ( x \ sigma {\ sqrt {2 \ pi}} \ right) \ right.
Distribution functionone2+one2Erf[ln⁡(x)-μσ2]{\ displaystyle {\ frac {1} {2}} + {\ frac {1} {2}} \ mathrm {Erf} \ left [{\ frac {\ ln (x) - \ mu} {\ sigma {\ sqrt {2}}}} \ right]} {\ frac {1} {2}} + {\ frac {1} {2}} {\ mathrm {Erf}} \ left [{\ frac {\ ln (x) - \ mu} {\ sigma {\ sqrt {2}}}} \ right]
Expected valueeμ+σ2/2{\ displaystyle e ^ {\ mu + \ sigma ^ {2} / 2}} e ^ {{\ mu + \ sigma ^ {2} / 2}}
Medianeμ{\ displaystyle e ^ {\ mu}} e ^ {{\ mu}}
Fashioneμ-σ2{\ displaystyle e ^ {\ mu - \ sigma ^ {2}}} e ^ {{\ mu - \ sigma ^ {2}}}
Dispersion(eσ2-one)e2μ+σ2{\ displaystyle (e ^ {\ sigma ^ {2}} \! \! - 1) e ^ {2 \ mu + \ sigma ^ {2}}} (e ^ {{\ sigma ^ {2}}} \! \! - 1) e ^ {{2 \ mu + \ sigma ^ {2}}}
Asymmetry coefficient(eσ2+2)eσ2-one{\ displaystyle (e ^ {\ sigma ^ {2}} \! \! + 2) {\ sqrt {e ^ {\ sigma ^ {2}} \! \! - 1}}} (e ^ {{\ sigma ^ {2}}} \! \! + 2) {\ sqrt {e ^ {{\ sigma ^ {2}}} \! \! - 1}}
Excess ratioefourσ2+2e3σ2+3e2σ2-6{\ displaystyle e ^ {4 \ sigma ^ {2}} \! \! + 2e ^ {3 \ sigma ^ {2}} \! \! + 3e ^ {2 \ sigma ^ {2}} \! \! -6} e ^ {{4 \ sigma ^ {2}}} \! \! + 2e ^ {{3 \ sigma ^ {2}}}!! \! + 3e ^ {{2 \ sigma ^ {2}}} \ ! \! - 6
Differential entropyone2+one2ln⁡(2πσ2)+μ{\ displaystyle {\ frac {1} {2}} + {\ frac {1} {2}} \ ln (2 \ pi \ sigma ^ {2}) + \ mu} {\ frac {1} {2}} + {\ frac {1} {2}} \ ln (2 \ pi \ sigma ^ {2}) + \ mu
The generating function of momentsE⁡[Xs]=esμ+one2s2σ2.{\ displaystyle \ operatorname {E} [X ^ {s}] = e ^ {s \ mu + {\ tfrac {1} {2}} s ^ {2} \ sigma ^ {2}}.} \ operatorname {E} [X ^ {s}] = e ^ {{s \ mu + {\ tfrac {1} {2}} s ^ {2} \ sigma ^ {2}}}.
Characteristic function∑n=0∞(it)nn!enμ+n2σ2/2{\ displaystyle \ sum _ {n = 0} ^ {\ infty} {\ frac {(it) ^ {n}} {n!}} e ^ {n \ mu + n ^ {2} \ sigma ^ {2 } / 2}} \ sum _ {{n = 0}} ^ {{\ infty}} {\ frac {(it) ^ {n}} {n!}} e ^ {{n \ mu + n ^ {2} \ sigma ^ {2} / 2}}

Content

Definition

Let the distribution of a random variableX {\ displaystyle X}   is given by the probability density , having the form:

f X ( x ) = one x σ 2 π e - ( ln ⁡ x - μ ) 2 / 2 σ 2 ,{\ displaystyle f_ {X} (x) = {\ frac {1} {x \ sigma {\ sqrt {2 \ pi}}}} e ^ {- (\ ln x- \ mu) ^ {2} / 2 \ sigma ^ {2}},}
 

Wherex>0,σ>0,μ∈R {\ displaystyle x> 0, \; \ sigma> 0, \; \ mu \ in \ mathbb {R}}   . Then they say thatX {\ displaystyle X}   has a lognormal distribution with parametersμ {\ displaystyle \ mu}   andσ {\ displaystyle \ sigma}   . They write:X∼LogN(μ,σ2) {\ displaystyle X \ sim \ mathrm {LogN} (\ mu, \ sigma ^ {2}) \}   .

Moments

Formula fork {\ displaystyle k}   of the lognormal random variableX {\ displaystyle X}   has the form:

E[Xk]=ekμ+k2σ22,k∈N,{\ displaystyle \ mathbb {E} \ left [X ^ {k} \ right] = e ^ {k \ mu + {\ frac {k ^ {2} \ sigma ^ {2}} {2}}}, \ ; k \ in \ mathbb {N},}  

whence in particular:

E[X]=eμ+σ22{\ displaystyle \ mathbb {E} [X] = e ^ {\ mu + {\ sigma ^ {2} \ over 2}}}   ,
D[X]=(eσ2-one)e2μ+σ2{\ displaystyle \ mathrm {D} [X] = \ left (e ^ {\ sigma ^ {2}} - 1 \ right) e ^ {2 \ mu + \ sigma ^ {2}}}   .

Any off-center moments of the n-dimensional joint lognormal distribution can be calculated using a simple formula:

αn=e(μ,n)+one2(n,Σn){\ displaystyle \ alpha _ {n} = e ^ {(\ mu, n) + {\ frac {1} {2}} (n, \ Sigma n)}}   whereμ {\ displaystyle \ mu}   andΣ {\ displaystyle \ Sigma}   - parameters of multidimensional joint distribution.n {\ displaystyle n}   Is a vector whose components determine the order of the moment. (For example, in the two-dimensional case,n=(2,0) {\ displaystyle n = (2,0)}   - the second off-center moment of the first component,n=(one,one) {\ displaystyle n = (1,1)}   - mixed second moment). Parentheses denote a scalar product.

Lognormal Distribution Properties

  • If aXone,...,Xn {\ displaystyle X_ {1}, \ ldots, X_ {n}}   Are independent lognormal random variables such thatXi∼LogN(μ,σi2) {\ displaystyle X_ {i} \ sim \ mathrm {LogN} (\ mu, \ sigma _ {i} ^ {2})}   , then their product is also lognormal:
    Y=∏i=onenXi∼LogN(nμ,∑i=onenσi2){\ displaystyle Y = \ prod \ limits _ {i = 1} ^ {n} X_ {i} \ sim \ mathrm {LogN} \ left (n \ mu, \ sum \ limits _ {i = 1} ^ {n } \ sigma _ {i} ^ {2} \ right)}   .

Relationship with other distributions

  • If aX∼LogN(μ,σ2) {\ displaystyle X \ sim \ mathrm {LogN} (\ mu, \ sigma ^ {2}) \}   thenY=ln⁡(X)∼N(μ,σ2) {\ displaystyle Y = \ ln (X) \ sim \ mathrm {N} (\ mu, \ sigma ^ {2}) \}   .

And vice versa, ifY∼N(μ,σ2) {\ displaystyle Y \ sim \ mathrm {N} (\ mu, \ sigma ^ {2}) \}   thenX=exp⁡(Y)∼LogN(μ,σ2) {\ displaystyle X = \ exp (Y) \ sim \ mathrm {LogN} (\ mu, \ sigma ^ {2}) \}   .

Modeling Lognormal Random Variables

For modeling, a link with a normal distribution is usually used. Therefore, it is enough to generate a normally distributed random variable, for example, using the Box-Muller transform , and calculate its exponent.

Variations generalization

Lognormal distribution is a special case of the so-called Captain distribution .

Applications

The lognormal distribution satisfactorily describes the distribution of particle frequencies by their sizes during random crushing, for example hailstones in a hail , etc. However, there are exceptions, for example, the size distribution of asteroids in the solar system has a logarithmic distribution .

Literature

  • Crow, Edwin L. & Shimizu, Kunio (Editors) (1988), Lognormal Distributions, Theory and Applications , vol. 88, Statistics: Textbooks and Monographs, New York: Marcel Dekker, Inc., p. xvi + 387, ISBN 0-8247-7803-0  
  • Aitchison, J. and Brown, JAC (1957) The Lognormal Distribution , Cambridge University Press.
  • Limpert, E; Stahel, W; Abbt, M. Lognormal distributions across the sciences: keys and clues (English) // BioScience : journal. - 2001. - Vol. 51 , no. 5 . - P. 341-352 . - DOI : 10.1641 / 0006-3568 (2001) 051 [0341: LNDATS] 2.0.CO; 2 .
  • Eric W. Weisstein et al. Log Normal Distribution at MathWorld . Electronic document, retrieved October 26, 2006.
  • Holgate, P. The lognormal characteristic function (neopr.) // Communications in Statistics - Theory and Methods. - 1989. - T. 18 , No. 12 . - S. 4539–4548 . - DOI : 10.1080 / 03610928908830173 .
  • Brooks, Robert; Corson, Jon; Donal, Wales . The Pricing of Index Options When the Underlying Assets All Follow a Lognormal Diffusion // Advances in Futures and Options Research: journal. - 1994. - Vol. 7 .
Source - https://ru.wikipedia.org/w/index.php?title=Lognormalnoe_ distribution &oldid = 101060559


More articles:

  • Wyman Carl
  • Pechgda
  • Ridgeway
  • Buarremon
  • Lozova City Council
  • KD Air
  • Austria at the 1972 Winter Olympics
  • Austria at the 1984 Winter Olympics
  • Stura Hammar Stone
  • Rosand, Aaron

All articles

Clever Geek | 2019