Clever Geek Handbook
📜 ⬆️ ⬇️

Entropy of a dynamical system

In the theory of dynamical systems, the entropy of a dynamical system is a number expressing the degree of randomness of its trajectories. There are metric entropy describing the randomness of dynamics in a system with an invariant measure for a random choice of the initial condition for this measure, and topological entropy describing the randomness of dynamics without assuming the law of choosing the starting point.

Moreover, the variational principle states that for a continuous dynamical system on a compact set, topological entropy is equal to the supremum of metric ones, taken from all possible choices of invariant measures of this system.

Content

Definitions

Topological Entropy

Let a continuous mapping be givenT {\ displaystyle T}   metric compact(X,d) {\ displaystyle (X, d)}   in yourself. Then, the metricdn {\ displaystyle d_ {n}}   onX {\ displaystyle X}   defined as

dn(x,y)=max0≤j≤nd(Tj(x),Tj(y)),{\ displaystyle d_ {n} (x, y) = \ max _ {0 \ leq j \ leq n} d (T ^ {j} (x), T ^ {j} (y)),}  

in other words, this is the maximum distance that the orbitsx {\ displaystyle x}   andy {\ displaystyle y}   diverge forn {\ displaystyle n}   iterations. Further, for a givenε>0, {\ displaystyle \ varepsilon> 0,}   they say that many(n,ε) {\ displaystyle (n, \ varepsilon)}   -separated if paireddn {\ displaystyle d_ {n}}   -distance between its points is not lessε {\ displaystyle \ varepsilon}   , and the power of the largest such set is denoted byN(n,ε) {\ displaystyle N (n, \ varepsilon)}   . Then, the topological entropy of the mapT {\ displaystyle T}   called double limit

h(T)=limε→0lim supn→∞onenlog⁡N(n,ε).{\ displaystyle h (T) = \ lim _ {\ varepsilon \ to 0} \ limsup _ {n \ to \ infty} {\ frac {1} {n}} \ log N (n, \ varepsilon).}  

The same quantity can be determined differently: if denoted byM(n,ε) {\ displaystyle M (n, \ varepsilon)}   least powerε {\ displaystyle \ varepsilon}   networks then

h(T)=limε→0lim supn→∞onenlog⁡M(n,ε).{\ displaystyle h (T) = \ lim _ {\ varepsilon \ to 0} \ limsup _ {n \ to \ infty} {\ frac {1} {n}} \ log M (n, \ varepsilon).}  

The equivalence of these definitions is easily derived from the inequalitiesN(n,ε)≤M(n,ε)≤N(n,ε/2). {\ displaystyle N (n, \ varepsilon) \ leq M (n, \ varepsilon) \ leq N (n, \ varepsilon / 2).}   It is worth noting that both this and another definition formalize the following non-strict concept: for an unknown starting point, how much information needs to be obtained per iteration in order to predict a large number of iterations with a small fixed error .

Metric Entropy

Let be(X,T,μ) {\ displaystyle (X, T, \ mu)}   - a measure-preserving measurable dynamical system. By definition, the entropy of a partitionX=⋃j=onenξj {\ displaystyle X = \ bigcup _ {j = 1} ^ {n} \ xi _ {j}}   called a number

H(ξ): =∑j=onen-μ(ξj)log⁡μ(ξj),{\ displaystyle H (\ xi): = \ sum _ {j = 1} ^ {n} - \ mu (\ xi _ {j}) \ log \ mu (\ xi _ {j}),}  

determining the informational entropy of the definition of a partition element containingμ {\ displaystyle \ mu}   - a random point.

Iterative shredding shreddingξ {\ displaystyle \ xi}   ,

ξ(k)={ξione∩T-one(ξi2)∩⋯∩T-k+one(ξik)∣one≤ione,...,ik≤n}{\ displaystyle \ xi ^ {(k)} = \ left \ {\ xi _ {i_ {1}} \ cap T ^ {- 1} (\ xi _ {i_ {2}}) \ cap \ dots \ cap T ^ {- k + 1} (\ xi _ {i_ {k}}) \ mid 1 \ leq i_ {1}, \ dots, i_ {k} \ leq n \ right \}}  

determine which elementsξ {\ displaystyle \ xi}   turns out to be a point throughoutk {\ displaystyle k}   iterations, and, accordingly, the quantity

hμ(T,ξ)=limonekH(ξ(k)){\ displaystyle h _ {\ mu} (T, \ xi) = \ lim {\ frac {1} {k}} H (\ xi ^ {(k)})}  

expresses the informational entropy of such a process. Finally, the metric entropy of the mappingT {\ displaystyle T}   asμ {\ displaystyle \ mu}   defined as an exact upper boundhμ(ξ) {\ displaystyle h _ {\ mu} (\ xi)}   on all possible partitionsξ {\ displaystyle \ xi}   :

hμ(T): =supξhμ(T,ξ).{\ displaystyle h _ {\ mu} (T): = \ sup _ {\ xi} h _ {\ mu} (T, \ xi).}  

Literature

  • Katok A. B. , Hasselblatt B. Introduction to the modern theory of dynamical systems = Introduction to the Modern Theory of Dynamical Systems / trans. from English A. Kononenko with the participation of S. Ferleger. - M .: Factorial, 1999 .-- 768 p. - ISBN 5-88688-042-9 .


Source - https://ru.wikipedia.org/w/index.php?title=Dynamic_system entropy&oldid = 89257387


More articles:

  • Pashkova, Larisa Alekseevna
  • Risorgimento
  • Gambusia
  • Hong Kong at the 1984 Summer Olympics
  • Uzbekistan at the 2006 Winter Olympics
  • UAE at the 2008 Summer Olympics
  • Cryptoanarchism
  • Dipipanon
  • Pakistan at the 1960 Summer Olympics
  • Stone Cold Crazy

All articles

Clever Geek | 2019