The Grad - Shafranov equation is the equation of plasma equilibrium in a tokamak . This equation was obtained by V. D. Shafranov in 1957 and independently by G. Grad and G. Rubin in 1958 .
In cylindrical coordinates, it has the form:
- {\ displaystyle r ^ {2} \ mathrm {div} \ left ({\ frac {1} {r ^ {2}}} \ nabla \ Psi \ right) = - r ^ {2} \ mu _ {0} \ cdot p ^ {\ prime} (\ Psi) - {\ frac {\ mu _ {0} ^ {2}} {4 \ pi ^ {2}}} F (\ Psi) \ cdot F ^ {\ prime } (\ Psi)}
,
or
- {\ displaystyle {\ frac {\ partial ^ {2} \ Psi} {\ partial r ^ {2}}} - {\ frac {1} {r}} {\ frac {\ partial \ Psi} {\ partial r }} + {\ frac {\ partial ^ {2} \ Psi} {\ partial z ^ {2}}} = - r ^ {2} \ mu _ {0} \ cdot {\ frac {dp} {d \ Psi}} - {\ frac {\ mu _ {0} ^ {2}} {4 \ pi ^ {2}}} F (\ Psi) \ cdot {\ frac {dF} {d \ Psi}}}
,
Where:
- {\ displaystyle \ Psi}
- magnetic flux through an external poloidal partition; - {\ displaystyle F}
- poloidal current; - {\ displaystyle p}
- plasma pressure; - {\ displaystyle \ mu _ {0}}
- magnetic constant .
Magnetic field induction:
- {\ displaystyle {\ vec {B}} = {\ frac {\ mu _ {0} \ cdot F} {2 \ pi r}} {\ vec {e}} _ {\ varphi} + {\ frac {\ nabla \ Psi \ times {\ vec {e}} _ {\ varphi}} {r}}}

Current density:
- {\ displaystyle {\ vec {j}} = {\ frac {1} {2 \ pi}} {\ frac {dF} {d \ Psi}} {\ vec {B}} + {\ frac {dp} { d \ Psi}} r \ cdot {\ vec {e}} _ {\ varphi}}
