Clever Geek Handbook
📜 ⬆️ ⬇️

Grad - Shafranov equation

The Grad - Shafranov equation is the equation of plasma equilibrium in a tokamak . This equation was obtained by V. D. Shafranov in 1957 and independently by G. Grad and G. Rubin in 1958 .

In cylindrical coordinates, it has the form:

r2div(oner2∇Ψ)=-r2μ0⋅p′(Ψ)-μ02fourπ2F(Ψ)⋅F′(Ψ){\ displaystyle r ^ {2} \ mathrm {div} \ left ({\ frac {1} {r ^ {2}}} \ nabla \ Psi \ right) = - r ^ {2} \ mu _ {0} \ cdot p ^ {\ prime} (\ Psi) - {\ frac {\ mu _ {0} ^ {2}} {4 \ pi ^ {2}}} F (\ Psi) \ cdot F ^ {\ prime } (\ Psi)} {\ displaystyle r ^ {2} \ mathrm {div} \ left ({\ frac {1} {r ^ {2}}} \ nabla \ Psi \ right) = - r ^ {2} \ mu _ {0} \ cdot p ^ {\ prime} (\ Psi) - {\ frac {\ mu _ {0} ^ {2}} {4 \ pi ^ {2}}} F (\ Psi) \ cdot F ^ {\ prime } (\ Psi)} ,

or

∂2Ψ∂r2-oner∂Ψ∂r+∂2Ψ∂z2=-r2μ0⋅dpdΨ-μ02fourπ2F(Ψ)⋅dFdΨ{\ displaystyle {\ frac {\ partial ^ {2} \ Psi} {\ partial r ^ {2}}} - {\ frac {1} {r}} {\ frac {\ partial \ Psi} {\ partial r }} + {\ frac {\ partial ^ {2} \ Psi} {\ partial z ^ {2}}} = - r ^ {2} \ mu _ {0} \ cdot {\ frac {dp} {d \ Psi}} - {\ frac {\ mu _ {0} ^ {2}} {4 \ pi ^ {2}}} F (\ Psi) \ cdot {\ frac {dF} {d \ Psi}}} {\ displaystyle {\ frac {\ partial ^ {2} \ Psi} {\ partial r ^ {2}}} - {\ frac {1} {r}} {\ frac {\ partial \ Psi} {\ partial r }} + {\ frac {\ partial ^ {2} \ Psi} {\ partial z ^ {2}}} = - r ^ {2} \ mu _ {0} \ cdot {\ frac {dp} {d \ Psi}} - {\ frac {\ mu _ {0} ^ {2}} {4 \ pi ^ {2}}} F (\ Psi) \ cdot {\ frac {dF} {d \ Psi}}} ,

Where:

  • Ψ{\ displaystyle \ Psi} \ Psi - magnetic flux through an external poloidal partition;
  • F{\ displaystyle F} F - poloidal current;
  • p{\ displaystyle p} p - plasma pressure;
  • μ0{\ displaystyle \ mu _ {0}} \ mu _ {0} - magnetic constant .

Magnetic field induction:

B→=μ0⋅F2πre→φ+∇Ψ×e→φr{\ displaystyle {\ vec {B}} = {\ frac {\ mu _ {0} \ cdot F} {2 \ pi r}} {\ vec {e}} _ {\ varphi} + {\ frac {\ nabla \ Psi \ times {\ vec {e}} _ {\ varphi}} {r}}} {\ displaystyle {\ vec {B}} = {\ frac {\ mu _ {0} \ cdot F} {2 \ pi r}} {\ vec {e}} _ {\ varphi} + {\ frac {\ nabla \ Psi \ times {\ vec {e}} _ {\ varphi}} {r}}}

Current density:

j→=one2πdFdΨB→+dpdΨr⋅e→φ{\ displaystyle {\ vec {j}} = {\ frac {1} {2 \ pi}} {\ frac {dF} {d \ Psi}} {\ vec {B}} + {\ frac {dp} { d \ Psi}} r \ cdot {\ vec {e}} _ {\ varphi}} {\ displaystyle {\ vec {j}} = {\ frac {1} {2 \ pi}} {\ frac {dF} {d \ Psi}} {\ vec {B}} + {\ frac {dp} { d \ Psi}} r \ cdot {\ vec {e}} _ {\ varphi}}

Literature

  • K.V. Brushlinsky , V.V. Saveliev . Magnetic traps to hold plasma. Mat. Modeling, vol. 11 N 5, 1999, pp. 3-36.
  • Physical Encyclopedia, T. 5, Toroidal Systems
  • TJM Boyd , JJ Sanderson The physics of plasmas
  • Kenrō Miyamoto Plasma physics and controlled nuclear fusion
  • Masahiro Wakatani Stellarator and heliotron devices


Source - https://ru.wikipedia.org/w/index.php?title= Grad's equation——_ Shafranova&oldid = 94330266


More articles:

  • Crimean, Germogen Filippovich
  • Petrovsky, Andrey Stanislavovich
  • Targaryen
  • Chalet Venel, Jean-Jacques
  • Kryazhimsky, Arkady Viktorovich
  • Video Signal
  • Fibrous root system
  • Fort Knox
  • Naturalist Travels
  • Dubentsovskaya

All articles

Clever Geek | 2019