Clever Geek Handbook
📜 ⬆️ ⬇️

Gauss Formula - Bonn

The Gauss – Bonnet formula relates the Euler characteristic of a surface with its Gaussian curvature and the geodesic curvature of its boundary.

Content

Wording

Let beΩ {\ displaystyle \ Omega}   Is a compact two-dimensional oriented Riemannian manifold with a smooth boundary∂Ω {\ displaystyle \ partial \ Omega}   . Denote byK {\ displaystyle K}   gaussian curvatureΩ {\ displaystyle \ Omega}   and throughkg {\ displaystyle k_ {g}}   geodesic curvature∂Ω {\ displaystyle \ partial \ Omega}   . Then

∫ΩKdσ+∫∂Ωkgds=2πχ(Ω),{\ displaystyle \ int \ limits _ {\ Omega} K \; d \ sigma + \ int \ limits _ {\ partial \ Omega} k_ {g} \; ds = 2 \ pi \ chi (\ Omega),}  

Whereχ(Ω) {\ displaystyle \ chi (\ Omega)}   - Euler characteristicΩ {\ displaystyle \ Omega}   .

In particular, ifΩ {\ displaystyle \ Omega}   no border, we get

∫ΩKdσ=2πχ(Ω){\ displaystyle \ int \ limits _ {\ Omega} K \; d \ sigma = 2 \ pi \ chi (\ Omega)}  

If the surface is deformed, then its Euler characteristic does not change, while the Gaussian curvature can change pointwise. However, according to the Gauss-Bonnet formula, the integral of the Gaussian curvature remains the same.

History

A special case of this formula for geodesic triangles was obtained by Friedrich Gauss [1] . [2] and Jacques Binet independently generalized the formula to the case of a disk of a bounded arbitrary curve; Binet did not publish an article on this subject, but Bonnet mentions this on page 129 of his "Mémoire sur la Théorie Générale des Surfaces". For non-simply connected regions, the formula appears in the work of Walter von Dieck [3] . The modern formulation is given by William Blaschke [4] .

Variations and generalizations

  • The Gauss – Bonnet formula naturally generalizes to domains with a piecewise-smooth boundary. If at the break pointPi {\ displaystyle P_ {i}}   tangent vectorτ {\ displaystyle {\ boldsymbol {\ tau}}}   swivelsϕi {\ displaystyle \ phi _ {i}}   towards the areaΩ {\ displaystyle \ Omega}   (can be a positive or negative number), then the formula generalizes to this:
    ∫ΩKdσ+∫Lkgds+∑iϕi=2πχ(Ω){\ displaystyle \ int \ limits _ {\ Omega} Kd \ sigma + \ int _ {L} k_ {g} ds + \ sum _ {i} \ phi _ {i} = 2 \ pi \ chi (\ Omega)}  
    • To display this formula, the areaΩ {\ displaystyle \ Omega}   need to be approximated by a region that has smoothed corners. Then the radius of the curve at the corners is directed to zero.
  • The generalized Gauss - Bonnet formula is a generalization of the Gauss - Bonnet formula to higher dimensions.
  • The Kon-Vossen inequality is a generalization of the Gauss-Bonnet formula to non-compact surfaces.
  • According to the Gauss-Bonnet formula, any triangle on a full surface of non-negative Gaussian curvature has a sum of angles of at leastπ {\ displaystyle \ pi}   . The Toponogov comparison theorem refines this inequality.

See also

  • Gauss Formula

Links

  1. ↑ CFGauss, Disquisitiones generales circa superficies curvas, Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores. Volume VI, pp. 99–146.
  2. ↑ Bonnet, 1848 'Mémoire sur la Théorie Générale des Surfaces', J. École Polytechnique 19 (1848) pp. 1-146
  3. ↑ von Dyck W. Beiträge zur analysis situs. Math Ann 32: 457-512 (1888)
  4. ↑ Wilhelm Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, 1921
  • S.E. Stepanov, Gauss — Bonnet Theorem, Coolant, 2000, No. 9, p. 116-121.
  • Wu, Hung-Hsi. "Historical development of the Gauss-Bonnet theorem." Science in China Series A: Mathematics 51.4 (2008): 777-784.
Source - https://ru.wikipedia.org/w/index.php?title=Gauss_Formula_—_Bonnet&oldid=99100859


More articles:

  • Vorontsova, Elizaveta Romanovna
  • Russians (film, 1987)
  • Mayak (2006 film)
  • Tee for Two
  • American Genre Painting
  • Vilenskaya, Anna Georgievna
  • INOGATE
  • Administrative division of Sokolsky district (Vologda region)
  • Wachtel Boaz
  • Kalinovo (Kupyansky District)

All articles

Clever Geek | 2019