Clever Geek Handbook
📜 ⬆️ ⬇️

Rigid system

A rigid system of ordinary differential equations (ODEs) is called (loosely speaking) such a system of ODEs whose numerical solution by explicit methods (for example, Runge-Kutta or Adams methods ) is unsatisfactory due to a sharp increase in the number of calculations (with a small integration step) or due to a sharp increase in the error (the so-called explosion of the error) with an insufficiently small step. Rigid systems are characterized by the fact that for them implicit methods give a better result, usually much better than explicit methods [1] .

Content

Formal Definition

Consider the Cauchy problem for an autonomous system of ODEs of the form

{dy(x)dx=F(y(x)),F(y)∈Cp(Ω),Ω⊂Rm,y(x0)=y0∈Ω,{\ displaystyle {\ begin {cases} {\ dfrac {d \ mathbf {y} (x)} {dx}} = \ mathbf {F} (\ mathbf {y} (x)), \ quad \ mathbf {F } (\ mathbf {y}) \ in C ^ {p} (\ Omega), \ quad \ Omega \ subset \ mathbb {R} ^ {m}, \\\ mathbf {y} (x_ {0}) = \ mathbf {y} _ {0} \ in \ Omega, \ end {cases}}}  (one)

Wherey(x) {\ displaystyle \ mathbf {y} (x)}   - unknown vector function ,F(y) {\ displaystyle \ mathbf {F} (\ mathbf {y})}   Is a given vector function,x {\ displaystyle x}   Is an independent variabley(x0)=y0 {\ displaystyle \ mathbf {y} (x_ {0}) = \ mathbf {y} _ {0}}   Is the initial condition .

System (1) is called rigid if for any initial valuesy(x0)=y0 {\ displaystyle \ mathbf {y} (x_ {0}) = \ mathbf {y} _ {0}}   on a given segment[x0,xend] {\ displaystyle [x_ {0}, \; x _ {\ mathrm {end}}]}   belonging to the existence interval of solution (1) , the conditions are satisfied:

  • maximum modulus of eigenvalues ​​of the Jacobi matrix ( spectral radiusρ {\ displaystyle \ rho}   ) is bounded along the solutiony(x) {\ displaystyle \ mathbf {y} (x)}   :
0<L⩽ρ(∂y(x)∂x)⩽‖∂y(x)∂x‖=‖∂K(x+ξ,x)∂ξ|ξ=0‖<+∞,x0⩽x⩽xend;{\ displaystyle 0 <L \ leqslant \ rho \ left ({\ frac {\ partial \ mathbf {y} (x)} {\ partial x}} \ right) \ leqslant \ left \ | {\ frac {\ partial \ mathbf {y} (x)} {\ partial x}} \ right \ | = \ left \ | \ left. {\ frac {\ partial K (x + \ xi, \; x)} {\ partial \ xi}} \ right | _ {\ xi = 0} \ right \ | <+ \ infty, \ quad x_ {0} \ leqslant x \ leqslant x _ {\ mathrm {end}};}  
  • there are such numbersξb {\ displaystyle \ xi _ {\ mathrm {b}}}   ,N {\ displaystyle N}   ,ν {\ displaystyle \ nu}   that satisfy the conditions:
0<ξb≪xend,N≫one,one⩽ν⩽p,0<ξb⩽x+ξb⩽x+ξ⩽xend;{\ displaystyle 0 <\ xi _ {\ mathrm {b}} \ ll x _ {\ mathrm {end}}, \ quad N \ gg 1, \ quad 1 \ leqslant \ nu \ leqslant p, \ quad 0 <\ xi _ {\ mathrm {b}} \ leqslant x + \ xi _ {\ mathrm {b}} \ leqslant x + \ xi \ leqslant x _ {\ mathrm {end}};}  
  • The following inequality holds:
‖∂νK(x+ξ,x)∂ξν‖⩽(LN)ν.{\ displaystyle \ left \ | {\ frac {\ partial ^ {\ nu} K (x + \ xi, \; x)} {\ partial \ xi ^ {\ nu}}} \ right \ | \ leqslant \ left ( {\ frac {L} {N}} \ right) ^ {\ nu}.}  

Here

K(x+ξ,x)=X(x+ξ)X-one(x);{\ displaystyle K (x + \ xi, \; x) = X (x + \ xi) X ^ {- 1} (x);}  
X(x){\ displaystyle X (x)}   - the fundamental matrix of the equation in variations for the system (1) ;
‖A‖=‖A‖m=maxi∑j=onem|aij|{\ displaystyle \ | A \ | = \ | A \ | _ {m} = \ max _ {i} \ sum _ {j = 1} ^ {m} | a_ {ij} |}   - matrixm {\ displaystyle m}   -norm.
ξb{\ displaystyle \ xi _ {\ mathrm {b}}}   - the so-called length (parameter) of the boundary layer.

Rigid differential ODE systems also include systems for which these conditions are satisfied after scaling the components of the vectory(x) {\ displaystyle \ mathrm {y} (x)}   on every decision.

Since any non-autonomous system of ODEs of orderm {\ displaystyle m}   can be reduced to autonomous by introducing an additional auxiliary function, then a non-autonomous ODE system is called rigid if the rigid autonomous system of order is equivalent to itm+one {\ displaystyle m + 1}   .

Literature

  • Khairer E., Wanner G. Solution of ordinary differential equations. Rigid and differential algebraic problems / Per. from English - M .: Mir, 1999 .-- 685 p. - ISBN 5-03-003117-0 . .
  • Curtiss CF, Hirschfelder J. O. Integration of stiff equations // Proceedings of the National Academy of Sciences of the USA. - 1952. - vol. 38 (3). - pp. 235-243.

Links

  • Rigid ODE systems
  • Ordinary differential equations. Lesson 15. Rigid systems of differential equations. Theoretical background

Notes

  1. ↑ Curtiss CF, Hirschfelder J. O. Integration of stiff equations // Proceedings of the National Academy of Sciences of the USA. - 1952. - vol. 38 (3). - pp. 235-243.
Source - https://ru.wikipedia.org/w/index.php?title=Hard_system&oldid=96824392


More articles:

  • Ferroviario (football club, Fortaleza)
  • Baxter District (Wikipedia)
  • Polyusuk, Natan Mikhailovich
  • Malaya Okhta (historic district)
  • Radichev
  • List of Sailor Moon Series (Season 4)
  • Ashilkhatoy
  • Sunflowers (Van Gogh painting)
  • Bondarenko, Alexander Fedorovich
  • MATIF

All articles

Clever Geek | 2019