Clever Geek Handbook
📜 ⬆️ ⬇️

Function Definition Area

The domain of definition or the domain of the function is the set on which the function is defined. At each point of this set, the value of the function must be determined.

Content

Definition

If on the setX {\ displaystyle X}   given a function that displays the setX {\ displaystyle X}   into another set, then manyX {\ displaystyle X}   called the definition area or function definition area .

More formally, if a function is specifiedf {\ displaystyle f}   which displays manyX {\ displaystyle X}   atY {\ displaystyle Y}   , i.e:f:X→Y {\ displaystyle f \ colon X \ to Y}   then the setX {\ displaystyle X}   called the definition domain [1] or the task domain [2] of the functionf {\ displaystyle f}   and is designatedD(f) {\ displaystyle D (f)}   ordomf {\ displaystyle \ mathrm {dom} \, f}   (from English. domain - "area").

Sometimes functions defined on a subset are also considered.D {\ displaystyle D}   some setX {\ displaystyle X}   . In this case, manyX {\ displaystyle X}   called function sending areaf {\ displaystyle f}   [3] .

Examples

The most obvious examples of areas of definition are delivered by numerical functions . Measure and functionality also deliver the types of definition areas that are important in applications.

Numeric Functions

Numeric functions are functions that belong to the following two classes:

  • real-valued functions of a real variable are functions of the formf:R→R {\ displaystyle f \ colon \ mathbb {R} \ to \ mathbb {R}}   ;
  • as well as complex-valued functions of a complex variable formf:C→C {\ displaystyle f \ colon \ mathbb {C} \ to \ mathbb {C}}   ,

WhereR {\ displaystyle \ mathbb {R}}   andC {\ displaystyle \ mathbb {C}}   - sets of real and complex numbers, respectively.

Identity Mapping

Function Definition Areaf(x)=x {\ displaystyle f (x) = x}   matches the dispatch area (R {\ displaystyle \ mathbb {R}}   orC {\ displaystyle \ mathbb {C}}   )

Harmonic function

Function Definition Areaf(x)=one/x {\ displaystyle f (x) = 1 / x}   represents a complex plane without zero:

domf=C∖{0}{\ displaystyle \ mathrm {dom} \, f = \ mathbb {C} \ setminus \ {0 \}}   ,

since the formula does not specify the value of the function at zero by any number, which is required in the formulation of the concept of a function. The departure area is the entire complex plane.

Fractional Rational Functions

The function definition domain of the form

f(x)=a0+aonex+⋯+amxmb0+bonex+⋯+bnxn{\ displaystyle f (x) = {\ frac {a_ {0} + a_ {1} x + \ dots + a_ {m} x ^ {m}} {b_ {0} + b_ {1} x + \ dots + b_ {n} x ^ {n}}}}  

represents a real line or a complex plane with the exception of a finite number of points that are solutions of the equation

b0+bonex+⋯+bnxn=0{\ displaystyle b_ {0} + b_ {1} x + \ dots + b_ {n} x ^ {n} = 0}   .

These points are called function poles .f {\ displaystyle f}   .

For example,f(x)=2xx2-four {\ displaystyle f (x) = {\ frac {2x} {x ^ {2} -4}}}   defined at all points where the denominator does not vanish, that is, wherex2-four≠0 {\ displaystyle x ^ {2} -4 \ neq 0}   . In this waydomf {\ displaystyle \ mathrm {dom} \, f}   is the set of all real (or complex) numbers except 2 and -2.

Measure

If each point in the domain of definition of a function is a certain set, for example, a subset of a given set, then they say that a set function is given.

A measure is an example of such a function, where a certain set of subsets of a given set acts as the domain of definition of a function (measure), which is, for example, a ring or a semiring of sets.

For example, a certain integral is a function of the oriented span .

Functionality

Let beF={f∣f:X→R} {\ displaystyle \ mathbb {F} = \ {f \ mid f \ colon X \ to \ mathbb {R} \}}   - a family of mappings from the setX {\ displaystyle X}   in manyR {\ displaystyle \ mathbb {R}}   . Then we can define a mapping of the formF:F→R {\ displaystyle F \ colon \ mathbb {F} \ to \ mathbb {R}}   . Such a mapping is called a functional .

If, for example, we fix some pointx0∈X {\ displaystyle x_ {0} \ in ~ X}   , then you can define the functionF(f)=f(x0) {\ displaystyle F (f) = f (x_ {0})}   that takes in a “point”f {\ displaystyle f}   same value as function itselff {\ displaystyle f}   at the pointx0 {\ displaystyle x_ {0}}   .

See also

  • Function Value Range

Notes

  1. ↑ V. A. Sadovnichy . Theory of operators. - M .: Bustard, 2001 .-- S. 10 .-- 381 p. - ISBN 5-71-074297-X .
  2. ↑ V. A. Ilyin , V. A. Sadovnichy , Bl. H. Sendov . Chapter 3. Theory of limits // Mathematical analysis / Ed. A.N. Tikhonova . - 3rd ed. , reslave. and add. - M .: Prospect, 2006. - T. 1. - S. 105-121. - 672 p. - ISBN 5-482-00445-7 .
  3. ↑ V.A. Zorich . Chapter I. Some general mathematical concepts and notation. § 3. Function // Mathematical analysis. Part I. - The fourth, corrected. - M .: MCLMO, 2002 .-- S. 12-14. - 664 p. - ISBN 5-94057-056-9 .

Literature

  • Function, mathematical encyclopedic dictionary. - Ch. ed. Yu. V. Prokhorov. - M .: "Big Russian Encyclopedia", 1995.
  • Klein F. General concept of function . In the book: Elementary mathematics from the point of view of higher education. T.1. M.-L., 1933
  • I.A. Lavrov , L.L. Maksimova . Part I. Set theory // Problems in set theory, mathematical logic and theory of algorithms. - 3rd ed. . - M .: Fizmatlit, 1995 .-- S. 13 - 21. - 256 p. - ISBN 5-02-014844-X .
  • A.N. Kolmogorov , S.V. Fomin . Chapter 1 .. Elements of set theory // Elements of function theory and functional analysis. - 3rd ed. . - M .: Nauka, 1972. - S. 14 - 18. - 256 p.
  • J. L. Kelly . Chapter 0. Preliminaries // General Topology. - 2nd ed. . - M .: Nauka, 1981. - S. 19 - 27. - 423 p.
  • V.A. Zorich . Chapter I. Some general mathematical concepts and notation. § 3. Function // Mathematical analysis, part I. - M .: Nauka, 1981. - P. 23 - 36. - 544 p.
  • G.E. Shilov . Chapter 2. Elements of set theory. § 2.8. General concept of function. Graph // Mathematical analysis (functions of one variable). - M .: Nauka, 1969 .-- S. 65 - 69. - 528 p.
  • A.N. Kolmogorov . “What is a function” // “Quantum” . - M .: "Science" , 1970. - Vol. 1 . - S. 27-36 . - ISSN 0130-2221 .


Source - https://ru.wikipedia.org/w/index.php?title= Function_definition_regex &oldid = 101244799


More articles:

  • Abbey of the Holy Trinity (Cava de Tirreni)
  • Long John Peter
  • Tylovyl Pelga
  • (81) Terpsichore
  • Zinder (region)
  • Shostka (tributary of the Desna)
  • Pshenitsky, Andrei (Andrzej) Pavlovich
  • Supporting hyperplane
  • USSR Personal Chess Championship 1947
  • Mauritstadt

All articles

Clever Geek | 2019