Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Additive set functions and measures

Set function is a valid numerical functionf:2Ξ©β†’R {\ displaystyle f {\ mbox {:}} 2 ^ {\ Omega} \ rightarrow \ \ mathbb {R}} {\ displaystyle f {\ mbox {:}} 2 ^ {\ Omega} \ rightarrow \ \ mathbb {R}} defined on2Ξ© {\ displaystyle 2 ^ {\ Omega} \} {\ displaystyle 2 ^ {\ Omega} \} - the set of all subsets of some arbitrary finite setΞ© {\ displaystyle \ Omega \} {\ displaystyle \ Omega \} measurable space(Ξ©,F) {\ displaystyle (\ Omega, {\ mathcal {F}})} {\ displaystyle (\ Omega, {\ mathcal {F}})} and taking its values ​​on the numerical axisR {\ displaystyle \ mathbb {R}} \ mathbb {R} .


An additive set-function is a set-function for which the equality holds:

f(xβˆͺy)+f(x∩y)=f(x)+f(y){\ displaystyle f (x \ cup y) + f (x \ cap y) = f (x) + f (y)} {\ displaystyle f (x \ cup y) + f (x \ cap y) = f (x) + f (y)}

for any subsetsxβŠ†Ξ© {\ displaystyle x \ subseteq \ Omega} {\ displaystyle x \ subseteq \ Omega} andyβŠ†Ξ© {\ displaystyle y \ subseteq \ Omega} {\ displaystyle y \ subseteq \ Omega} .


Measure is an additive set-function for which it is true:f(βˆ…)=0 {\ displaystyle f (\ emptyset) = 0} {\ displaystyle f (\ emptyset) = 0} .

The value of any measuref {\ displaystyle f \} {\ displaystyle f \} on an arbitrary subsetxβŠ†Ξ© {\ displaystyle x \ subseteq \ Omega} {\ displaystyle x \ subseteq \ Omega} can be represented as the sum of its values ​​on monoplet{Ο‰}:Ο‰βˆˆx {\ displaystyle \ {\ omega \}: \ omega \ in x} {\ displaystyle \ {\ omega \}: \ omega \ in x} :

f(x)=βˆ‘Ο‰βˆˆxf({Ο‰}),xβŠ†Ξ©{\ displaystyle f (x) = \ sum _ {\ omega \ in x} f (\ {\ omega \}) {\ mbox {,}} x \ subseteq \ Omega} {\ displaystyle f (x) = \ sum _ {\ omega \ in x} f (\ {\ omega \}) {\ mbox {,}} x \ subseteq \ Omega} .

It is believed thatβˆ‘Ο‰βˆˆβˆ…f({Ο‰})=0,βˆΟ‰βˆˆβˆ…f({Ο‰})=one {\ displaystyle \ sum _ {\ omega \ in \ emptyset} f (\ {\ omega \}) = 0, \ prod _ {\ omega \ in \ emptyset} f (\ {\ omega \}) = 1} {\ displaystyle \ sum _ {\ omega \ in \ emptyset} f (\ {\ omega \}) = 0, \ prod _ {\ omega \ in \ emptyset} f (\ {\ omega \}) = 1} .

Literature

  • Lovasz L. (1983) Submodular functions and convexity. In: A. Bachem, M. Grotschel, and B. Korte, editors, Mathematical Programming - The State of the Art}, Springer-Veriag, 235–257.
  • Fujishige S. (1984) Theory of submodular programs, A Fenchel-type min-max theorem and subgradients of submodular functions, Mathematical Programming, 29, 142-155.
  • Foldes Stephan, Hammer Peter L. (2002) Submodularity, Supermodularity, Higher Order Monotonicities. Rutcor research

Report, 10-2002, March, 2002.

  • Hammer, PL, and S. Rudeanu} (1968) Boolean Methods in Operation Research and Relared Areas, Springer-Verlag, Berlin, Heidelberg, New York.


Source - https://ru.wikipedia.org/w/index.php?title= Additive_set_functions_ and_measures&oldid = 83813113


More articles:

  • Koryo-Khitan Wars
  • HEAO-2
  • Abdulov, Ivan Filippovich
  • ASCA
  • Lateral ventricles of the brain
  • Kolesnikov, Evgeny Viktorovich
  • CAI GA
  • Riley, John Christopher
  • Wisconsin Flag
  • Yucca

All articles

Clever Geek | 2019