Dan random process {\ displaystyle X = (X_ {t}) _ {t \ geqslant 0}} specified on filtered probability space {\ displaystyle \ left (\ Omega, \; {\ mathfrak {F}}, \; ({\ mathfrak {F}} _ {t}) _ {t \ geqslant 0}, \; P \ right)} with the flow {\ displaystyle ({\ mathfrak {F}} _ {t}) _ {t \ geqslant 0}} .
Let a stochastic differential equation be given {\ displaystyle dX_ {t} = a (t, \; \ omega) \, dt + b (t, \; \ omega) \, dB_ {t}} or, in integral form
{\ displaystyle X_ {t} = X_ {0} + \ int \ limits _ {0} ^ {t} a (s, \; \ omega) \, ds + \ int \ limits _ {0} ^ {t} b (s, \; \ omega) \, dB_ {s},} Where {\ displaystyle B = \ left (B_ {t}, \; {\ mathfrak {F}} _ {t} \ right) _ {t \ geqslant 0}} - Brownian motion.
Now let {\ displaystyle F (t, \; x)} - set to {\ displaystyle \ mathbb {R} _ {+} \ times \ mathbb {R}} continuous function from class {\ displaystyle C ^ {1, \; 2}} that is, having derivatives {\ displaystyle {\ frac {\ partial F} {\ partial t}}, \ {\ frac {\ partial F} {\ partial x}}, \ {\ frac {\ partial ^ {2} F} {\ partial x ^ {2}}}.}
Under these assumptions:
{\ displaystyle dF (t, \; X_ {t}) = \ left [{\ frac {\ partial F} {\ partial t}} + a (t, \; \ omega) {\ frac {\ partial F} {\ partial x}} + {\ frac {1} {2}} b ^ {2} (t, \ omega) {\ frac {\ partial ^ {2} F} {\ partial x ^ {2}}} \ right] \, dt + {\ frac {\ partial F} {\ partial x}} b (t, \; \ omega) \, dB_ {t}.} Speaking more strictly, with each {\ displaystyle t> 0} for {\ displaystyle F (t, \; X_ {t})} The following Ito formula is valid:
{\ displaystyle F (t, \; X_ {t}) = F (0, \; X_ {0}) + \ int \ limits _ {0} ^ {t} \ left [{\ frac {\ partial F} {\ partial t}} + a (s, \; \ omega) {\ frac {\ partial F} {\ partial x}} + {\ frac {1} {2}} b ^ {2} (s, \ ; \ omega) {\ frac {\ partial ^ {2} F} {\ partial x ^ {2}}} \ right] \, ds + \ int \ limits _ {0} ^ {t} {\ frac {\ partial F} {\ partial x}} b (s, \; \ omega) \, dB_ {s}.}