Clever Geek Handbook
📜 ⬆️ ⬇️

Ito's formula

Ito 's formula is a formula for changing a variable in a stochastic differential equation . The author of the formula Ito Kiyoshi is a Japanese statistical mathematician.

Content

Definition

Dan random processX=(Xt)t⩾0 {\ displaystyle X = (X_ {t}) _ {t \ geqslant 0}}   specified on filtered probability space(Ω,F,(Ft)t⩾0,P) {\ displaystyle \ left (\ Omega, \; {\ mathfrak {F}}, \; ({\ mathfrak {F}} _ {t}) _ {t \ geqslant 0}, \; P \ right)}   with the flow(Ft)t⩾0 {\ displaystyle ({\ mathfrak {F}} _ {t}) _ {t \ geqslant 0}}   .

Let a stochastic differential equation be givendXt=a(t,ω)dt+b(t,ω)dBt {\ displaystyle dX_ {t} = a (t, \; \ omega) \, dt + b (t, \; \ omega) \, dB_ {t}}   or, in integral form

Xt=X0+∫0ta(s,ω)ds+∫0tb(s,ω)dBs,{\ displaystyle X_ {t} = X_ {0} + \ int \ limits _ {0} ^ {t} a (s, \; \ omega) \, ds + \ int \ limits _ {0} ^ {t} b (s, \; \ omega) \, dB_ {s},}  

WhereB=(Bt,Ft)t⩾0 {\ displaystyle B = \ left (B_ {t}, \; {\ mathfrak {F}} _ {t} \ right) _ {t \ geqslant 0}}   - Brownian motion.

Now letF(t,x) {\ displaystyle F (t, \; x)}   - set toR+×R {\ displaystyle \ mathbb {R} _ {+} \ times \ mathbb {R}}   continuous function from classCone,2 {\ displaystyle C ^ {1, \; 2}}   that is, having derivatives∂F∂t,∂F∂x,∂2F∂x2. {\ displaystyle {\ frac {\ partial F} {\ partial t}}, \ {\ frac {\ partial F} {\ partial x}}, \ {\ frac {\ partial ^ {2} F} {\ partial x ^ {2}}}.}  

Under these assumptions:

dF(t,Xt)=[∂F∂t+a(t,ω)∂F∂x+one2b2(t,ω)∂2F∂x2]dt+∂F∂xb(t,ω)dBt.{\ displaystyle dF (t, \; X_ {t}) = \ left [{\ frac {\ partial F} {\ partial t}} + a (t, \; \ omega) {\ frac {\ partial F} {\ partial x}} + {\ frac {1} {2}} b ^ {2} (t, \ omega) {\ frac {\ partial ^ {2} F} {\ partial x ^ {2}}} \ right] \, dt + {\ frac {\ partial F} {\ partial x}} b (t, \; \ omega) \, dB_ {t}.}  

Speaking more strictly, with eacht>0 {\ displaystyle t> 0}   forF(t,Xt) {\ displaystyle F (t, \; X_ {t})}   The following Ito formula is valid:

F(t,Xt)=F(0,X0)+∫0t[∂F∂t+a(s,ω)∂F∂x+one2b2(s,ω)∂2F∂x2]ds+∫0t∂F∂xb(s,ω)dBs.{\ displaystyle F (t, \; X_ {t}) = F (0, \; X_ {0}) + \ int \ limits _ {0} ^ {t} \ left [{\ frac {\ partial F} {\ partial t}} + a (s, \; \ omega) {\ frac {\ partial F} {\ partial x}} + {\ frac {1} {2}} b ^ {2} (s, \ ; \ omega) {\ frac {\ partial ^ {2} F} {\ partial x ^ {2}}} \ right] \, ds + \ int \ limits _ {0} ^ {t} {\ frac {\ partial F} {\ partial x}} b (s, \; \ omega) \, dB_ {s}.}  

Multidimensional generalization

See also

  • Stochastic differential equation
  • Formula Feynman - Katz
  • Kolmogorov - Chapman equation
  • Fokker - Planck equation

Links

  • The stochastic world - a simple introduction to stochastic differential equations
Source - https://ru.wikipedia.org/w/index.php?title=Formula_Ito&oldid=90419331


More articles:

  • Labor Mobility
  • Tha Carter II
  • Raid on Berlin (1760)
  • Isotomidae
  • International Tribunal for the Former Yugoslavia
  • Talking Giant
  • Mitrofan (Krasnopolsky)
  • Chichy
  • Pichhovani
  • Gidnellum

All articles

Clever Geek | 2019