Clever Geek Handbook
📜 ⬆️ ⬇️

The identity of eight squares

The identity of eight squares is the following identity expressing the product of the sums of eight squares as the sum of eight squares:

(aone2+a22+a32+afour2+afive2+a62+a72+aeight2)⋅(bone2+b22+b32+bfour2+bfive2+b62+b72+beight2)==(aonebone-a2b2-a3b3-afourbfour-afivebfive-a6b6-a7b7-aeightbeight)2++(a2bone+aoneb2+afourb3-a3bfour+a6bfive-afiveb6-aeightb7+a7beight)2++(a3bone-afourb2+aoneb3+a2bfour+a7bfive+aeightb6-afiveb7-a6beight)2++(afourbone+a3b2-a2b3+aonebfour+aeightbfive-a7b6+a6b7-afivebeight)2++(afivebone-a6b2-a7b3-aeightbfour+aonebfive+a2b6+a3b7+afourbeight)2++(a6bone+afiveb2-aeightb3+a7bfour-a2bfive+aoneb6-afourb7+a3beight)2++(a7bone+aeightb2+afiveb3-a6bfour-a3bfive+afourb6+aoneb7-a2beight)2++(aeightbone-a7b2+a6b3+afivebfour-afourbfive-a3b6+a2b7+aonebeight)2.{\ displaystyle {\ begin {aligned} (a_ {1} ^ {2} + a_ {2} ^ {2} + a_ {3} ^ {2} + a_ {4} ^ {2} + a_ {5} ^ {2} + a_ {6} ^ {2} + a_ {7} ^ {2} + a_ {8} ^ {2}) & \ cdot (b_ {1} ^ {2} + b_ {2} ^ {2} + b_ {3} ^ {2} + b_ {4} ^ {2} + b_ {5} ^ {2} + b_ {6} ^ {2} + b_ {7} ^ {2} + b_ {8} ^ {2}) = \\ & = (a_ {1} b_ {1} -a_ {2} b_ {2} -a_ {3} b_ {3} -a_ {4} b_ {4} - a_ {5} b_ {5} -a_ {6} b_ {6} -a_ {7} b_ {7} -a_ {8} b_ {8}) ^ {2} + \\ & + (a_ {2} b_ {1} + a_ {1} b_ {2} + a_ {4} b_ {3} -a_ {3} b_ {4} + a_ {6} b_ {5} -a_ {5} b_ {6} - a_ {8} b_ {7} + a_ {7} b_ {8}) ^ {2} + \\ & + (a_ {3} b_ {1} -a_ {4} b_ {2} + a_ {1} b_ {3} + a_ {2} b_ {4} + a_ {7} b_ {5} + a_ {8} b_ {6} -a_ {5} b_ {7} -a_ {6} b_ {8}) ^ {2} + \\ & + (a_ {4} b_ {1} + a_ {3} b_ {2} -a_ {2} b_ {3} + a_ {1} b_ {4} + a_ {8} b_ {5} -a_ {7} b_ {6} + a_ {6} b_ {7} -a_ {5} b_ {8}) ^ {2} + \\ & + (a_ {5} b_ {1} -a_ {6} b_ {2} -a_ {7} b_ {3} -a_ {8} b_ {4} + a_ {1} b_ {5} + a_ {2} b_ {6} + a_ {3} b_ {7} + a_ {4} b_ {8}) ^ {2} + \\ & + (a_ {6} b_ {1} + a_ {5} b_ {2} -a_ {8} b_ {3} + a_ {7} b_ {4} -a_ {2} b_ {5} + a_ {1} b_ {6} -a_ {4} b_ {7} + a_ {3} b_ {8}) ^ {2} + \\ & + (a_ {7} b_ {1} + a_ {8} b_ {2} + a_ {5} b_ {3} -a_ {6} b_ {4} -a_ {3} b_ {5} + a_ {4} b_ {6} + a_ {1} b_ {7} -a_ {2} b_ {8}) ^ {2} + \\ & + (a_ {8} b_ {1} -a_ {7 } b_ {2} + a_ {6} b_ {3} + a_ {5} b_ {4} -a_ {4} b_ {5} -a_ {3} b_ {6} + a_ {2} b_ {7} + a_ {1} b_ {8}) ^ {2}. \ end {aligned}}} {\ displaystyle {\ begin {aligned} (a_ {1} ^ {2} + a_ {2} ^ {2} + a_ {3} ^ {2} + a_ {4} ^ {2} + a_ {5} ^ {2} + a_ {6} ^ {2} + a_ {7} ^ {2} + a_ {8} ^ {2}) & \ cdot (b_ {1} ^ {2} + b_ {2} ^ {2} + b_ {3} ^ {2} + b_ {4} ^ {2} + b_ {5} ^ {2} + b_ {6} ^ {2} + b_ {7} ^ {2} + b_ {8} ^ {2}) = \\ & = (a_ {1} b_ {1} -a_ {2} b_ {2} -a_ {3} b_ {3} -a_ {4} b_ {4} - a_ {5} b_ {5} -a_ {6} b_ {6} -a_ {7} b_ {7} -a_ {8} b_ {8}) ^ {2} + \\ & + (a_ {2} b_ {1} + a_ {1} b_ {2} + a_ {4} b_ {3} -a_ {3} b_ {4} + a_ {6} b_ {5} -a_ {5} b_ {6} - a_ {8} b_ {7} + a_ {7} b_ {8}) ^ {2} + \\ & + (a_ {3} b_ {1} -a_ {4} b_ {2} + a_ {1} b_ {3} + a_ {2} b_ {4} + a_ {7} b_ {5} + a_ {8} b_ {6} -a_ {5} b_ {7} -a_ {6} b_ {8}) ^ {2} + \\ & + (a_ {4} b_ {1} + a_ {3} b_ {2} -a_ {2} b_ {3} + a_ {1} b_ {4} + a_ {8} b_ {5} -a_ {7} b_ {6} + a_ {6} b_ {7} -a_ {5} b_ {8}) ^ {2} + \\ & + (a_ {5} b_ {1} -a_ {6} b_ {2} -a_ {7} b_ {3} -a_ {8} b_ {4} + a_ {1} b_ {5} + a_ {2} b_ {6} + a_ {3} b_ {7} + a_ {4} b_ {8}) ^ {2} + \\ & + (a_ {6} b_ {1} + a_ {5} b_ {2} -a_ {8} b_ {3} + a_ {7} b_ {4} -a_ {2} b_ {5} + a_ {1} b_ {6} -a_ {4} b_ {7} + a_ {3} b_ {8}) ^ {2} + \\ & + (a_ {7} b_ {1} + a_ {8} b_ {2} + a_ {5} b_ {3} -a_ {6} b_ {4} -a_ {3} b_ {5} + a_ {4} b_ {6} + a_ {1} b_ {7} -a_ {2} b_ {8}) ^ {2} + \\ & + (a_ {8} b_ {1} -a_ {7 } b_ {2} + a_ {6} b_ {3} + a_ {5} b_ {4} -a_ {4} b_ {5} -a_ {3} b_ {6} + a_ {2} b_ {7} + a_ {1} b_ {8}) ^ {2}. \ end {aligned}}}

History

First discovered by the Danish mathematician Ferdinand Degen around 1818 , this remarkable identity was “rediscovered” two more times: first by Thomas Graves in 1843 , and then by Arthur Cayley in 1845 . Cayley derived it by working on a generalization of quaternions called octonions . In algebraic terms, identity means that the norm of the product of two octonions is equal to the product of their norms:‖a⋅b‖=‖a‖⋅‖b‖ {\ displaystyle \ | a \ cdot b | | = \ | a \ | \ cdot \ | b \ |} {\displaystyle \|a\cdot b\|=\|a\|\cdot \|b\|} .

A similar statement is true for quaternions ( “the identity of four squares” ), complex numbers ( “the identity of two squares” ) and real numbers. In 1898, Adolf Hurwitz proved that such an identity does not exist either for 16 ( sedenions ) or for any other number of squares except 1, 2, 4, and 8.

Links

  • Degen's eight-square identity (English)


Source - https://ru.wikipedia.org/w/index.php?title=Einformation_Eight_Square_oldid=98722854


More articles:

  • Safari
  • Cheboksary Reservoir
  • Notification
  • Zemlyanichenko, Alexander Vadimovich
  • Clementine Black
  • Abruptive consonants
  • Larishchevo (Dobrush district)
  • RD-500
  • Ikindzhi Shihly
  • 3 year BC er

All articles

Clever Geek | 2019