Clever Geek Handbook
📜 ⬆️ ⬇️

Semi-simple number

A semisimple number (or a biprime ) is a number that can be represented as a product of two primes .

Examples

The sequence of semisimple numbers starts like this:

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, ... (sequence A001358 in OEIS )

The distribution diagram of semisimple numbers on the number axis :

 

On 07.06.2019 the largest known semisimple number is (2 82589933 - 1) 2 . It is equal to the square of the largest known prime number , which is a prime Mersenne number M 82589933 = 2 82589933 - 1.

The following table lists all semisimple numbers, whose simple divisors do not exceed 47:

Table of products of prime numbers (up to 47 × 47)
×23five7eleven1317nineteen23293137414347
2four6ten142226343846586274828694
369152133395157698793111123129141
fiveten15253555658595115145155185205215235
7142135497791119133161203217259287301329
eleven22335577121143187209253319341407451473517
1326396591143169221247299377403481533559611
17345185119187221289323391493527629697731799
nineteen385795133209247323361437551589703779817893
2346691151612532993914375296677138519439891081
2958871452033193774935516678418991073118912471363
3162931552173414035275897138999611147127113331457
3774111185259407481629703851107311471369151715911739
4182123205287451533697779943118912711517168117631927
4386129215301473559731817989124713331591176318492021
47941412353295176117998931081136314571739192720212209

Properties

  • It is proved that every sufficiently large odd natural number can be represented as the sum of three semisimple numbers [1] [2] .
  • The square of any prime number is a semisimple number, which is trivial .
  • All semisimple numbers except 6 are insufficient .
  • If n - 1 and n + 1 are prime numbers twins for some positive integer n, then n 2 - 1 is a semisimple number.

Notes

  1. ↑ http://usve1326.vserver.de/index.php/term/1-entsiklopediya,4777-problema-gol-dbaha.xhtml (not available link)
  2. Г Goldbach Problem - Math
Source - https://ru.wikipedia.org/w/index.php?title=Simple_toturn&oldid=100276443


More articles:

  • List of Heads of Yaroslavl
  • Pachistachis
  • Pontano, Giovanni
  • GAM-63 RASCAL
  • Goritski, Ingo
  • Doxography
  • Mamedov, Mamed Jebrailovich
  • 6to4
  • Tarsus
  • Short-Term Moon Events

All articles

Clever Geek | 2019