A high voltage direct current power line ( HVDC ) uses direct current to transmit electricity, unlike the more common alternating current power lines (power lines). High-voltage DC power lines can be more economical when transmitting large volumes of electricity over long distances. The use of direct current for underwater power lines avoids the loss of reactive power due to the large cable capacity that inevitably occurs when using alternating current. In certain situations, DC power lines can be useful even at short distances, despite the high cost of equipment.
A DC power line allows you to transport electricity between unsynchronized AC power systems, and also helps to increase reliability by preventing cascading failures due to phase out of sync between the individual parts of a large power system. A DC power line also allows you to transfer electricity between AC power systems operating at different frequencies, for example, 50 Hz and 60 Hz. This method of transmission increases the stability of the energy systems, since if necessary they can use energy reserves from incompatible energy systems.
The modern HVDC transmission method uses technology developed in the 30s of the XX century by the Swedish company ASEA . One of the first HVDC systems was commissioned in the Soviet Union in 1950 between the cities of Moscow and Kashira (the German trophy equipment Project Elba was used), and in Sweden in 1954 from the mainland to the island of Gotland , with a system capacity of 10 -20 MW [1] .
The longest HVDC line in the world is currently located in Brazil and is used to transfer electricity generated by two hydroelectric power plants ( Santo Antoniu and Girau ) to the city of SΓ£o Paulo . Its total length is 2400 km, power - 3.15 GW.
Content
Working Principle
Power is equal to the product of voltage by current (P = U * I). Thus, by increasing the voltage, it is possible to reduce the current transmitted through the wire and, as a result, it is possible to reduce the cross-section of the wire required to transmit this power, which will reduce the cost of power lines.
To date, there is no way without large losses to change over a wide range of DC voltage. The most effective device for changing the voltage value is an AC transformer . Therefore, at the input of all high-voltage power lines of direct current, a transformer is installed to increase the alternating current voltage and equipment for converting alternating current to direct current, and at the output, equipment is used to convert direct current to alternating current and a transformer to reduce the voltage of this alternating current.
The first way to convert large powers from direct current to alternating current and vice versa was a motor-generator system , developed by Swiss engineer Rene Thouri . In simple words, at the power line input, the alternating current motor rotates the direct current generator, and at the output - the direct current motor rotates the alternating current generator. Such a system had a rather low efficiency and low reliability.
The practical use of a DC power line became possible only with the advent of a powerful arc electric device called a mercury rectifier .
Later, powerful semiconductor devices appeared - thyristors , insulated gate bipolar transistors ( IGBTs ), high-power insulated gate field effect transistors ( MOSFETs ) and lockable thyristors ( GTOs ).
The history of high voltage DC power lines
The first DC power line for transmitting electricity over a long distance was launched in 1882 on the Misbach - Munich line . It transferred energy from a DC generator rotated by a steam engine to a furnace of a glass factory. The transmitted power was only 2.5 kW and there were no DC to AC converters on the line.
The first power transmission line, using the generator-motor current conversion method developed by Swiss engineer Rene Thury, was built in Italy in 1889 by Acquedotto de Ferrari-Galliera. To increase the voltage, the generator-motor pairs were connected in series. Each group was isolated from the ground and set in motion by the main engine. The line worked on direct current, with voltage up to 5000 V on each machine, some machines had dual switches to reduce voltage on each switch. This system transmitted power of 630 kW at a constant voltage of 14 kV over a distance of 120 km [3] [4] .
The Moutiers-Lyon transmission line transmitted 8600 kW of generated hydroelectric power to a distance of 124 miles, including 6 miles of underground cable. To convert the current, eight series-connected generators with double switches were used, which produced a voltage of 150 kV at the output. This line worked from about 1906 to 1936.
By 1913, there were fifteen TΓΌri power lines in the world [5] operating at a constant voltage of 100 kV, which were used until the 1930s, but rotating electric machines were unreliable, expensive to maintain, and had low efficiency. In the first half of the 20th century, other electromechanical devices were tested, but they were not widely used [6] .
To convert a high DC voltage to low, it was proposed to first charge the batteries connected in series, and then connect them in parallel and connect to the consumer [7] . At the beginning of the 20th century, there were at least two DC power lines that used this principle, but this technology did not receive further development due to the limited capacity of the batteries, an ineffective charge / discharge cycle, and the difficulty of switching between serial and parallel connection.
In the period from 1920 to 1940. mercury valves were used to convert current. In 1932, General Electric used 12 kV DC mercury valves in Mechanicville, New York , which was also used to convert the generated 40 Hz alternating current to a 60 Hz load alternating current. In 1941, a 115-kilometer underground cable line was developed, with a capacity of 60 MW, voltage +/- 200 kV, for the city of Berlin , using mercury valves ( Project Elba ), but due to the collapse of the Third Reich in 1945 the project was not completed [8] . The use of the cable was explained by the fact that during wartime, the underground cable would be a less visible target of bombing. The equipment was exported to the Soviet Union and was commissioned there in 1950 [9] .
The further use of mercury valves in 1954 laid the foundation for modern high-voltage DC power lines. The first such power line was created by ASEA between mainland Sweden and the island of Gotland. Mercury valves were used on all power lines built before 1975, but were later replaced by semiconductor devices. From 1975 to 2000 thyristors, which are now actively replaced by field-effect transistors, were widely used for current conversion [10] . With the transition to more reliable semiconductor devices, dozens of underwater high-voltage DC power lines were laid.
At the moment, there are only two power lines with converters on mercury valves in the world, all the rest have been dismantled or replaced by converters on thyristors. Mercury valves are used on power lines between the North and South islands of New Zealand and Vancouver Island power lines in Canada.
Advantages of high voltage DC power lines compared to AC power lines
The main advantage of high voltage direct current power lines is the ability to transmit large volumes of electricity over long distances with less loss than AC power lines. Depending on the line voltage and current conversion method, losses can be reduced to 3% per 1000 km. Energy transfer through a high voltage direct current power line allows the efficient use of electric power sources remote from load power nodes.
In some cases, a high voltage direct current power line is more efficient than an alternating current power line:
- When transmitting energy through an underwater cable , which has a rather high capacity, which leads to losses in reactive power when using alternating current (for example, the 250 km Baltic Cable line between Sweden and Germany [11] ).
- Transmission of energy in the power system directly from the power plant to the consumer, for example, in remote areas.
- Increasing the capacity of the existing power system in cases where installing additional AC power lines is difficult or too expensive.
- Power transmission and stabilization between non-synchronized AC power systems.
- Connecting a remote power station to a power system , for example, the Nelson River Bipole line.
- Reducing the cost of the line by reducing the number of conductors. In addition, thinner conductors may be used since the HVDC is not susceptible to surface effects .
- Simplified energy transfer between power systems using different standards of voltage and frequency of alternating current.
- Synchronization with a network of alternating current energy from renewable energy sources.
Long submarine cables have a high capacity . While this fact has a minimal role for direct current power transmission, alternating current leads to charging and discharging the cable capacity, causing additional power losses. In addition, AC power is spent on dielectric loss.
A high voltage DC power line can transmit more power through the conductor , since for a given rated power, the constant voltage in the direct current line is lower than the amplitude voltage in the alternating current line. AC power determines the actual voltage value, but it only makes up about 71% of the maximum amplitude voltage, which determines the actual insulation thickness and the distance between the conductors. Since the direct voltage of the direct current line is equal to the amplitude, it becomes possible to transmit 41% more power through the existing power line with conductors and insulation of the same size as alternating current, which reduces costs.
Since a high-voltage DC power line allows the transfer of energy between non-synchronized distribution systems of alternating current, this allows to increase the stability of the system, preventing the cascade spread of the accident from one part of the power system to another. Changes in the load leading to desynchronization of individual parts of the AC mains will not affect the DC line, and power flow through the DC line will stabilize the AC mains. The magnitude and direction of the power flow through the direct current line can be directly adjusted and changed to maintain the required state of the alternating current electric networks from both ends of the direct current line.
Disadvantages
The main disadvantage of high-voltage power lines of direct current is the need to convert the type of current from alternating to direct and vice versa. Used for this device require expensive spare parts, as, in fact, are unique to each line.
Current converters are expensive and have limited overload capacity. At small distances, the losses in the converters may be greater than in a similar AC power transmission line.
Unlike AC power lines, the implementation of multi-terminal DC power lines is extremely difficult, since it requires the expansion of existing circuits to multi-terminal ones. Power flow control in a multi-terminal DC system requires good communication between all consumers. High voltage DC circuit breakers have a more complex device, since before opening the contacts, it is necessary to reduce the current in the circuit to zero, otherwise an electric arc will form, leading to excessive wear of the contacts. Branched lines are rare. One of them works in the Hydro Quebec - New England system from Radisson to Sandy Pond [12] . Another system is the power transmission line connecting Sardinia and mainland Italy, which was rebuilt in 1989 to provide power to the island of Corsica [13] .
HVDC Transfer Costs
Typically, developers of high-voltage DC power lines, such as Alstom Grid , Siemens and ABB , do not publish information about the cost of the project, since this information is a commercial secret.
The cost varies widely depending on the specific features of the project, such as rated power, line length, air or underwater way of laying a route, the cost of land, and a change in the electrical AC network of each end of the line. A detailed comparison of the cost of a DC line versus the cost of an AC line may be required. Where the technical advantages of a direct current line do not matter, the choice is made from an economic comparison of options.
Based on some projects, we can highlight some information about the cost of a direct current power transmission line project:
For an 8-GW 40-km line under the English Channel, the approximate costs of primary equipment for a 500-kV bipolar HVDC line with a capacity of 2000 MW (excluding access roads, coastal work, coordination, equipment, insurance, etc.) amounted to: conversion stations - ~ Β£ 110 M, submarine cable + installation - ~ Β£ 1 M / km [ significance of fact? ] .
So, for a four-line power line between England and France with a capacity of 8 GW, the cost of installation work was a little more than Β£ 750 M. Also, Β£ 200-300 M were spent on additional coastal work [14] [ significance of fact? ] .
Straightening and inverting
Components
Earlier in the HVDC lines, mercury rectifiers were used that were unreliable. Two HVDC devices using mercury rectifiers are still in operation (2008). Thyristors were first used in HVDC devices in the 1960s. A thyristor is a semiconductor device similar to a diode , but with an additional output - a control electrode, which is used to turn on the device at a certain point in time. Insulated Gate Bipolar Transistors (IGBTs) are also used, which have better controllability but greater cost.
Since the voltage in HVDC devices in some cases reaches 800 kV, exceeding the breakdown voltage of a semiconductor device, HVDC converters are built using a large number of series-connected semiconductor devices.
The low-voltage control circuits used to turn on and off the thyristors must be galvanically isolated from high voltage power lines. Typically, this isolation is optical, direct or indirect. In an indirect control system, the low-voltage control electronics sends light pulses through the fiber to the high-voltage control electronics. The direct version dispenses with electronics on the high side: light pulses from the control electronics directly switch the photo thyristors .
ΠΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ°ΡΡΠΈΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ Π² ΡΠ±ΠΎΡΠ΅, Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ Π΅Π³ΠΎ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ, ΠΎΠ±ΡΡΠ½ΠΎ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²Π΅Π½ΡΠΈΠ»Π΅ΠΌ.
ΠΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΠΈ ΠΈ ΠΈΠ½Π²Π΅ΡΡΠΎΡΡ
Π Π²ΡΠΏΡΡΠΌΠ»Π΅Π½ΠΈΠΈ ΠΈ ΠΈΠ½Π²Π΅ΡΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΠΎ ΡΡΡΠ΅ΡΡΠ²Ρ ΠΎΠ΄Π½ΠΈ ΠΈ ΡΠ΅ ΠΆΠ΅ Π°Π³ΡΠ΅Π³Π°ΡΡ. ΠΠ½ΠΎΠ³ΠΈΠ΅ ΠΏΠΎΠ΄ΡΡΠ°Π½ΡΠΈΠΈ Π½Π°ΡΡΡΠΎΠ΅Π½Ρ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠ±Ρ ΠΎΠ½ΠΈ ΠΌΠΎΠ³Π»ΠΈ ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΈ ΠΊΠ°ΠΊ Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΠΈ, ΠΈ ΠΊΠ°ΠΊ ΠΈΠ½Π²Π΅ΡΡΠΎΡΡ. Π‘ΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π°Π±ΠΎΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠΎΠ², ΡΠ°ΡΡΠΎ ΠΈΠ· ΡΡΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΎΠ΄Π½ΠΎΡΠ°Π·Π½ΡΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠΎΠ², ΡΠ°Π·Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ°Π½ΡΠΈΡ ΠΎΡ ΡΠ΅ΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Ρ Π·Π°Π·Π΅ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΈ Π³Π°ΡΠ°Π½ΡΠΈΡΡΡ ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΠ΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅. ΠΡΡ ΠΎΠ΄Ρ ΡΡΠΈΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠΎΠ² ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΊ Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΡΠΌ ΠΏΠΎ ΠΌΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅, ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π±ΠΎΠ»ΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΎΠΌ Π²Π΅Π½ΡΠΈΠ»Π΅ΠΉ. ΠΠ°Π·ΠΎΠ²Π°Ρ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡ Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»Ρ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΡΠ΅ΡΡΡ Π²Π΅Π½ΡΠΈΠ»Π΅ΠΉ. Π‘Ρ Π΅ΠΌΠ° ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Ρ ΡΠ°Π·ΠΎΠ²ΡΠΌ ΡΠ΄Π²ΠΈΠ³ΠΎΠΌ Π² ΡΠ΅ΡΡΡΠ΄Π΅ΡΡΡ Π³ΡΠ°Π΄ΡΡΠΎΠ², ΠΏΠΎΡΡΠΎΠΌΡ Π² Π²ΡΠΏΡΡΠΌΠ»Π΅Π½Π½ΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΠΊ.
ΠΠ»Ρ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΡ Π΅ΠΌΠ° Ρ 12 Π²Π΅Π½ΡΠΈΠ»ΡΠΌΠΈ (Π΄Π²Π΅Π½Π°Π΄ΡΠ°ΡΠΈΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΠΉ ΡΠ΅ΠΆΠΈΠΌ). ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π΅ Π²ΡΠΎΡΠΈΡΠ½ΡΠ΅ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ (ΠΈΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π²Π° ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°), ΠΎΠ΄Π½Π° ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Β«Π·Π²Π΅Π·Π΄Π°Β», Π° Π΄ΡΡΠ³Π°Ρ β Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ», ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Ρ ΡΠ΄Π²ΠΈΠ³ ΡΠ°Π·Ρ Π² 30 Π³ΡΠ°Π΄ΡΡΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡΠΌΠΈ Π½Π° Π²ΡΠΎΡΠΈΡΠ½ΡΡ ΠΎΠ±ΠΌΠΎΡΠΊΠ°Ρ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°. Π ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π²ΡΠΎΡΠΈΡΠ½ΡΡ ΠΎΠ±ΠΌΠΎΡΠΎΠΊ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠΎΡΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΉ 6 Π²Π΅Π½ΡΠΈΠ»Π΅ΠΉ, Π²ΡΠ²ΠΎΠ΄Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ. Π’Π΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ Π΄Π²Π΅Π½Π°Π΄ΡΠ°ΡΠΈΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΠΉ ΡΠ΅ΠΆΠΈΠΌ Ρ Π»ΡΡΡΠΈΠΌ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΎΡΡΠ°Π²ΠΎΠΌ.
Π Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°ΠΌ, Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΡΠΈΠ»ΡΡΡΠΎΠ²Π°ΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΠΊΠΈ.
Π’ΠΈΠΏΡ ΡΡ Π΅ΠΌ
ΠΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½Π°Ρ
Π ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π²ΡΠ²ΠΎΠ΄ΠΎΠ² Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»Ρ Π·Π°Π·Π΅ΠΌΠ»ΡΡΡ. ΠΡΡΠ³ΠΎΠΉ Π²ΡΠ²ΠΎΠ΄, Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ Π²ΡΡΠ΅ ΠΈΠ»ΠΈ Π½ΠΈΠΆΠ΅ Π·Π°Π·Π΅ΠΌΠ»ΡΠ½Π½ΠΎΠ³ΠΎ, ΡΠ²ΡΠ·Π°Π½ Ρ Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ. ΠΠ°Π·Π΅ΠΌΠ»ΡΠ½Π½ΡΠΉ Π²ΡΠ²ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ²ΡΠ·Π°Π½ ΠΈΠ»ΠΈ Π½Π΅ ΡΠ²ΡΠ·Π°Π½ Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌ Π²ΡΠ²ΠΎΠ΄ΠΎΠΌ ΠΈΠ½Π²Π΅ΡΡΠΎΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΈΠΈ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°.
ΠΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΎΠ±ΡΠ°ΡΠ½ΡΠΉ ΡΠΎΠΊ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π΅Ρ Π² Π·Π΅ΠΌΠ»Π΅ ΠΌΠ΅ΠΆΠ΄Ρ Π·Π°Π·Π΅ΠΌΠ»ΡΠ½Π½ΡΠΌΠΈ Π²ΡΠ²ΠΎΠ΄Π°ΠΌΠΈ Π΄Π²ΡΡ ΠΏΠΎΠ΄ΡΡΠ°Π½ΡΠΈΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎ ΠΎΠ΄Π½ΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½Π°Ρ ΡΡ Π΅ΠΌΠ° Ρ Π·Π΅ΠΌΠ½ΡΠΌ Π²ΠΎΠ·Π²ΡΠ°ΡΠΎΠΌ. ΠΡΠΎΠ±Π»Π΅ΠΌΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠ·Π΄Π°Π΅Ρ ΡΠΎΠΊ, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΠΉ Π² Π·Π΅ΠΌΠ»Π΅ ΠΈΠ»ΠΈ Π²ΠΎΠ΄Π΅, Π²ΠΊΠ»ΡΡΠ°ΡΡ:
- ΠΠ»Π΅ΠΊΡΡΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΡΡ ΠΊΠΎΡΡΠΎΠ·ΠΈΡ ΠΏΡΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ Π² Π³ΡΡΠ½ΡΠ΅ Π΄Π»ΠΈΠ½Π½ΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ ΡΡΡΠ±ΠΎΠΏΡΠΎΠ²ΠΎΠ΄Ρ
- ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ Π»ΠΎΡΠ° ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π° ΠΌΠΎΡΡΠΊΠΎΠΉ Π²ΠΎΠ΄Ρ ΠΎΡ ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠ΅Π³ΠΎ ΡΠΎΠΊΠ° ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°.
- ΠΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π΅ ΠΈΠ·-Π·Π° Π½Π΅ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, Π²Π»ΠΈΡΡΡΠ΅Π΅ Π½Π° ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π½Π°Π²ΠΈΠ³Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΊΠΎΠΌΠΏΠ°ΡΡ ΡΡΠ΄ΠΎΠ², ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠΈΡ Π½Π°Π΄ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΡΠΌ ΠΊΠ°Π±Π΅Π»Π΅ΠΌ.
ΠΡΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΡΡΡΠ°Π½Π΅Π½Ρ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΎΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΌΠ΅ΠΆΠ΄Ρ Π·Π°Π·Π΅ΠΌΠ»ΡΠ½Π½ΡΠΌΠΈ Π²ΡΠ²ΠΎΠ΄Π°ΠΌΠΈ ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΈ Π²ΡΠ²ΠΎΠ΄Ρ Π·Π°Π·Π΅ΠΌΠ»Π΅Π½Ρ, Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π² ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΈΠ·ΠΎΠ»ΡΡΠΈΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π° Π½Π° ΠΏΠΎΠ»Π½ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ, ΡΡΠΎ Π΄Π΅Π»Π°Π΅Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ ΠΌΠ΅Π½Π΅Π΅ Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠΈΠΌ, ΡΠ΅ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ± ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π° ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ , ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΠΊΡΠΎΡΠ°Ρ [15] .
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ 1500 ΠΠΡ. ΠΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠ°Π±Π΅Π»Ρ ΠΎΠ±ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 600 ΠΠΡ.
ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ Π΄Π»Ρ Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ Π΄ΠΎ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΡ. ΠΠΏΠΎΡΡ Π»ΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ Π½Π΅ΡΡΠΈ Π΄Π²Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°, Π΄Π°ΠΆΠ΅ Π΅ΡΠ»ΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΏΡΠΎΠ²ΠΎΠ΄ Π² ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅. ΠΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΈΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Ρ Π΄ΡΡΠ³ΠΈΠΌ (ΠΊΠ°ΠΊ Π² ΡΠ»ΡΡΠ°Π΅ ΠΠ°Π»ΡΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΠΊΠ°Π±Π΅Π»Ρ ).
ΠΠΈΠΏΠΎΠ»ΡΡΠ½Π°Ρ
Π Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠ½ΠΎΡΡΠΈ, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΏΠΎΠ΄ Π²ΡΡΠΎΠΊΠΈΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π·Π΅ΠΌΠ»ΠΈ. Π‘ΡΠΎΠΈΠΌΠΎΡΡΡ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π²ΡΡΠ΅ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΡ Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠΌ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ±Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΈΠΌΠ΅ΡΡ ΠΈΠ·ΠΎΠ»ΡΡΠΈΡ Π½Π° ΠΏΠΎΠ»Π½ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅. ΠΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π΄Π΅Π»Π°ΡΡ Π΅Ρ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ. ΠΡΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ΅ Π² Π·Π΅ΠΌΠ»Π΅ ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡ Π½Π΅Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΎΠΊΠΈ, ΠΊΠ°ΠΊ ΠΈ Π² ΡΠ»ΡΡΠ°Π΅ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Ρ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΠ±ΡΠ°ΡΠ½ΡΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠΌ. ΠΡΠΎ ΡΠΌΠ΅Π½ΡΡΠ°Π΅Ρ ΠΏΠΎΡΠ΅ΡΠΈ Π² Π·Π΅ΠΌΠ»Π΅ ΠΈ ΡΠ½ΠΈΠΆΠ°Π΅Ρ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅. ΠΡΠΈ Π°Π²Π°ΡΠΈΠΈ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π»ΠΈΠ½ΠΈΠΉ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡ ΡΠ°Π±ΠΎΡΠ°ΡΡ, ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Ρ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠΎ Π½Π΅ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄ΡΠ½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π² ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π·Π΅ΠΌΠ»ΠΈ Π² ΡΠΎΠ»ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°. ΠΠ° ΠΎΡΠ΅Π½Ρ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½ Π½Π° Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΌ Π½Π°Π±ΠΎΡΠ΅ ΠΎΠΏΠΎΡ ΠΠΠ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π»ΠΈΠ½ΠΈΠΉ ΡΠ°ΡΡΡ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Π»Π°ΡΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π»Ρ Π΄Π°Π½Π½ΠΎΠΉ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΡ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° ΡΠΎΠΊΠ° ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΌΠ΅Π½ΡΡΠ΅ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π²ΡΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡΡΠ½ΡΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠΌ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠΎΠΉ ΠΆΠ΅ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ.
ΠΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠ΅ ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠ½Π°ΡΠ΅Π½ΠΎ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΠ±ΡΠ°ΡΠ½ΡΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠΌ.
ΠΠΈΠΏΠΎΠ»ΡΡΠ½ΡΠ΅ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΌΠΎΠ³ΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°ΡΡ Π΄ΠΎ 3200 ΠΠΡ Π½Π° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΈ +/-600 ΠΊΠ. ΠΠΎΠ΄Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠ°Π±Π΅Π»ΡΠ½Π°Ρ Π»ΠΈΠ½ΠΈΡ, ΠΏΠ΅ΡΠ²ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΠΎ ΡΠΎΠΎΡΡΠΆΠ΅Π½Π½Π°Ρ ΠΊΠ°ΠΊ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½Π°Ρ, ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΊΠ°Π±Π΅Π»ΡΠΌΠΈ ΠΈ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π² Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅.
ΠΡΡΠ°Π²ΠΊΠ° ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°
ΠΡΡΠ°Π²ΠΊΠ° ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π½ΡΠΈΠ΅ΠΉ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΈ ΠΈΠ½Π²Π΅ΡΡΠΎΡΡ ΠΈ Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΌΠ΅ΡΡΠ΅, ΠΎΠ±ΡΡΠ½ΠΎ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈ ΡΠΎΠΌ ΠΆΠ΅ Π·Π΄Π°Π½ΠΈΠΈ. ΠΠΈΠ½ΠΈΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠΎΡΠΊΠΎΠΉ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. ΠΡΡΠ°Π²ΠΊΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ: ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΌΠ°Π³ΠΈΡΡΡΠ°Π»ΡΠ½ΡΡ Π»ΠΈΠ½ΠΈΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ (ΠΊΠ°ΠΊ Π² Π―ΠΏΠΎΠ½ΠΈΠΈ), ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π΄Π²ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΡΠ΅ΠΉ ΡΠΎΠΉ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠΉ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ, Π½ΠΎ ΡΠ°Π·Π½ΡΡ Π½Π΅ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ°Π·ΠΎΠ²ΡΡ ΡΠ΄Π²ΠΈΠ³ΠΎΠ² (ΠΊΠ°ΠΊ Π΄ΠΎ 1995/96 Π² ΠΊΠΎΠΌΠΌΡΠ½Π΅ ΠΡΡΠ΅Π½ΡΠΈΡ Ρ ).
ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ Π²ΡΡΠ°Π²ΠΊΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²ΡΠ±ΡΠ°Π½Π° ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎ ΠΈΠ·-Π·Π° ΠΌΠ°Π»ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ Π»ΠΈΠ½ΠΈΠΈ. ΠΠ±ΡΡΠ½ΠΎ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΠ±ΠΈΡΠ°ΡΡ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ Π½ΠΈΠ·ΠΊΠΈΠΌ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ ΠΌΠ΅Π½ΡΡΠΈΠΉ Π·Π°Π» Π΄Π»Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π²Π΅Π½ΡΠΈΠ»Π΅ΠΉ. ΠΠΎ ΡΡΠΎΠΉ ΠΆΠ΅ ΠΏΡΠΈΡΠΈΠ½Π΅ Π²ΠΎ Π²ΡΡΠ°Π²ΠΊΠ΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΈΠ»ΡΠ½ΠΎΡΠΎΡΠ½ΡΠ΅ Π²Π΅Π½ΡΠΈΠ»ΠΈ.
Π‘ΠΈΡΡΠ΅ΠΌΡ Ρ Π»ΠΈΠ½ΠΈΡΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ
Π‘Π°ΠΌΠ°Ρ ΠΎΠ±ΡΠ°Ρ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡ Π»ΠΈΠ½ΠΈΠΈ HVDC β ΡΡΠΎ Π΄Π²Π΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π½ΡΠΈΠΈ ΠΈΠ½Π²Π΅ΡΡΠΎΡ / Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»Ρ , ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ. Π’Π°ΠΊΠ°Ρ ΠΆΠ΅ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ Π½Π΅ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌ, Π² ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π½Π° Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ, ΠΈ Π² ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΡΡ ΠΊΠ°Π±Π΅Π»Π΅ΠΉ.
ΠΡΠ»ΡΡΠΈΡΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½Π°Ρ HVDC Π»ΠΈΠ½ΠΈΡ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠ°Ρ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡΡ ΠΏΡΠ½ΠΊΡΠΎΠ², ΡΠ΅Π΄ΠΊΠ°. ΠΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡ ΠΌΡΠ»ΡΡΠΈΡΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ, ΠΈΠ»ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΠΎΠΉ (ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ-ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ). ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡ ΡΠ°ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΎΡ Π±ΠΎΠ»ΡΡΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΠΉ, Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½Π°Ρ β ΠΎΡ ΠΌΠ΅Π½Π΅Π΅ ΠΌΠΎΡΠ½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΠΉ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΈΡΡΠ΅ΠΌΠ° Quebec-New England ΠΌΠΎΡΠ½ΠΎΡΡΡΡ 2000 ΠΠΡ, ΠΎΡΠΊΡΡΡΠ°Ρ Π² 1992, Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΡΡΠΏΠ½Π΅ΠΉΡΠ΅ΠΉ ΠΌΡΠ»ΡΡΠΈΡΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ HVDC ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π² ΠΌΠΈΡΠ΅ [16] .
Π’ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠ½Π°Ρ
ΠΠ°ΠΏΠ°ΡΠ΅Π½ΡΠΎΠ²Π°Π½Π½Π°Ρ Π² 2004 Π³ΠΎΠ΄Ρ ΡΡ Π΅ΠΌΠ° ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π° Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π° HVDC. ΠΠ²Π° ΠΈΠ· ΡΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΡ Π΅ΠΌΡ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π² Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅. Π’ΡΠ΅ΡΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΉ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»Ρ, ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ΅Π²Π΅ΡΡΠ½ΡΠΌΠΈ Π²Π΅Π½ΡΠΈΠ»ΡΠΌΠΈ (ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ Π²Π΅Π½ΡΠΈΠ»ΡΠΌΠΈ, Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΠΌΠΈ Π² ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠ½ΠΎΡΡΠΈ). ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΉ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅Ρ ΡΠΎΠΊ ΠΎΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ° ΠΈΠ»ΠΈ Π΄ΡΡΠ³ΠΎΠ³ΠΎ, ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ°Ρ ΠΏΠΎΠ»ΡΡΠ½ΠΎΡΡΡ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠΈΠ½ΡΡ. ΠΠ΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ½ΠΎΡΡΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»Π΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ Π±ΡΠ» Π±Ρ Π·Π°Π³ΡΡΠΆΠ΅Π½ Π½Π° +/-100 % ΠΏΠΎ Π½Π°Π³ΡΠ΅Π²Ρ, Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ Π±ΡΠ»ΠΈ Π±Ρ Π½Π°Π³ΡΡΠΆΠ΅Π½Ρ ΠΈΠ»ΠΈ Π½Π° 137 % ΠΈΠ»ΠΈ Π½Π° 37 %. Π ΡΠ»ΡΡΠ°Π΅ Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ΅ΠΉΡΡ ΠΏΠΎΠ»ΡΡΠ½ΠΎΡΡΡΡ, ΡΡΠΌΠΌΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΠΉ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅ΠΊΡ ΡΠ°ΠΊΠΎΠΉ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ Π±Ρ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠ°Π±ΠΎΡΠ°Π» ΠΏΡΠΈ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΌ ΡΠΎΠΊΠ΅. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠΏΡΡΠΊΠ°ΡΡ Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠΎΠΊΠΈ ΠΏΠΎ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΡΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°ΠΌ, ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΠ΅ΡΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΠ°ΠΆΠ΅ ΠΊΠΎΠ³Π΄Π° ΡΠ½Π΅ΡΠ³ΠΎΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΠ΅ Π½ΠΈΠ·ΠΊΠΎΠ΅, Π²ΡΡΠΎΠΊΠΈΠ΅ ΡΠΎΠΊΠΈ ΠΌΠΎΠ³ΡΡ ΡΠΈΡΠΊΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π°ΠΌ Π»ΠΈΠ½ΠΈΠΈ Π΄Π»Ρ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ Ρ Π½ΠΈΡ Π»ΡΠ΄Π°.
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠ΅ΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π² ΡΡΡΡ ΠΏΠΎΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°ΡΡ Π΄ΠΎ 80 % Π±ΠΎΠ»ΡΡΠ΅ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ ΡΠΎΠΌ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠΌ ΡΠ°Π·Π½ΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΠΉ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ, ΠΎΠΏΠΎΡ ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½Π°Π³ΡΡΠΆΠ΅Π½Ρ Π΄ΠΎ ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π° ΠΈΠ·-Π·Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ, Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π² HVDC Π»ΠΈΠ½ΠΈΠΈ.
Π’ΡΡΡ ΠΏΠΎΠ»ΡΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π±Π΅Π· ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π°. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π°Π²Π°ΡΠΈΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Ρ ΠΈΠ»ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΊ ΠΌΠ°Π»ΠΎΠΉ ΠΏΠΎΡΠ΅ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, Π° ΠΎΠ±ΡΠ°ΡΠ½ΡΠΉ ΡΠΎΠΊ, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΠΉ Π² Π·Π΅ΠΌΠ»Π΅, Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ, Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡ ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΡ Π²ΡΡΠΎΠΊΠ°, Π±Π΅Π· Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠ³ΠΎ Π½Π° ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅.
ΠΠ° 2005 Π³ΠΎΠ΄ Π½Π΅ Π±ΡΠ»ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ Π»ΠΈΠ½ΠΈΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π² ΡΡΡΡ ΠΏΠΎΠ»ΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ, Ρ ΠΎΡΡ Π»ΠΈΠ½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π² ΠΠ½Π΄ΠΈΠΈ Π±ΡΠ»Π° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π° Π² Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΡΡ HVDC.
ΠΠΎΡΠΎΠ½Π½ΡΠΉ ΡΠ°Π·ΡΡΠ΄
ΠΠΎΡΠΎΠ½Π½ΡΠΉ ΡΠ°Π·ΡΡΠ΄ β ΡΡΠΎ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Π°Ρ ΡΠΎΡΠΌΠ° ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ°Π·ΡΡΠ΄Π°, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π³ΠΎ Π² ΡΠ΅Π·ΠΊΠΎ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΡΡ ΠΏΠΎΠ»ΡΡ . ΠΡΠΎ ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠ·Π²Π°ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΡΠ΅ΡΠΈ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΡΠ»ΡΡΠΈΠΌΡΠ΅ ΠΈ ΡΠ°Π΄ΠΈΠΎΡΠ°ΡΡΠΎΡΠ½ΡΠ΅ ΠΏΠΎΠΌΠ΅Ρ ΠΈ, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ ΡΠ΄ΠΎΠ²ΠΈΡΡΠ΅ ΡΠΌΠ΅ΡΠΈ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΎΠΊΡΠΈΠ΄Ρ Π°Π·ΠΎΡΠ° ΠΈ ΠΎΠ·ΠΎΠ½, ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ΅ ΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅.
ΠΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠΎΠ³ΡΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΊΠΎΡΠΎΠ½Π½ΡΠ΅ ΡΠ°Π·ΡΡΠ΄Ρ, Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π² ΡΠΎΡΠΌΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠΈΡ ΡΡ ΡΠ°ΡΡΠΈΡ, Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΌ β ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ°. ΠΠΎΡΠΎΠ½Π½ΡΠΉ ΡΠ°Π·ΡΡΠ΄ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΏΠΎΡΠ΅ΡΠΈ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ ΠΎΡ Π²ΡΠ΅Ρ ΠΏΠΎΡΠ΅ΡΡ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π΄Π»ΠΈΠ½Ρ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, Π½Π΅ΡΡΡΠ΅Π³ΠΎ ΡΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ. Π ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ΅ Π²ΡΠ±ΠΎΡ ΠΏΠΎΠ»ΡΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΊΠΎΡΠΎΠ½Π½ΡΡ ΡΠ°Π·ΡΡΠ΄ΠΎΠ², Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° ΠΎΠΊΡΡΠΆΠ°ΡΡΡΡ ΡΡΠ΅Π΄Ρ. ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊΠΎΡΠΎΠ½Π½ΡΠ΅ ΡΠ°Π·ΡΡΠ΄Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠ΅ ΠΎΠ·ΠΎΠ½Π° ΡΠ΅ΠΌ ΠΊΠΎΡΠΎΠ½Π½ΡΠ΅ ΡΠ°Π·ΡΡΠ΄Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΡΡ Π½Π° Π·Π΄ΠΎΡΠΎΠ²ΡΠ΅. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΌΠ΅Π½ΡΡΠ°Π΅Ρ ΠΎΠ±ΡΡΠΌ ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΎΠ·ΠΎΠ½Π° ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ HVDC.
Application
Overview
Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠΊΠΎΠΌ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΡΠΌΠΈ ΠΊΠ°Π±Π΅Π»ΡΠΌΠΈ Π΄Π΅Π»Π°ΡΡ HVDC ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π΄Π»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΠΌΠ΅ΠΆΠ½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅. ΠΠ΅ΡΡΠΎΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΠΈ ΡΠ°ΡΡΠΎ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°ΡΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ 10-12 ΠΊΠΌ ΠΎΡ Π±Π΅ΡΠ΅Π³Π° (Π° ΠΈΠ½ΠΎΠ³Π΄Π° ΠΈ Π΄Π°Π»ΡΡΠ΅) ΠΈ ΡΡΠ΅Π±ΡΡΡ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΡΡ ΠΊΠ°Π±Π΅Π»Π΅ΠΉ ΠΈ ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π½Π° ΠΎΡΠ΅Π½Ρ Π±ΠΎΠ»ΡΡΠΈΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Π² ΠΎΡΠ΄Π°Π»ΡΠ½Π½ΡΠ΅ ΡΠ°ΠΉΠΎΠ½Ρ Π‘ΠΈΠ±ΠΈΡΠΈ , ΠΠ°Π½Π°Π΄Ρ ΠΈ ΡΠΊΠ°Π½Π΄ΠΈΠ½Π°Π²ΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π²Π΅ΡΠ°, Π²ΡΠ±ΠΎΡ ΠΎΠ±ΡΡΠ½ΠΎ ΡΠΊΠ»ΠΎΠ½ΡΠ΅ΡΡΡ Π² ΡΡΠΎΡΠΎΠ½Ρ ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ Π»ΠΈΠ½ΠΈΠΈ HVDC. ΠΡΡΠ³ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ HVDC ΡΠΈΡΡΠ΅ΠΌ Π±ΡΠ»ΠΈ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π²ΡΡΠ΅.
ΠΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°
ΠΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠΎΠ³ΡΡ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π½Π° ΡΠΎΠΉ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ΅ ΠΈ Π² ΡΠ°Π·Π΅. ΠΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΆΠ΅Π»Π°ΡΡ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡΡΡ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ, ΠΈΠΌΠ΅ΡΡ Π½Π΅ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠΈ. ΠΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΡ ΠΠ΅Π»ΠΈΠΊΠΎΠ±ΡΠΈΡΠ°Π½ΠΈΠΈ , ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΠ²ΡΠΎΠΏΡ ΠΈ ΠΊΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΠ²ΡΠΎΠΏΡ Π½Π΅ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π² Π΅Π΄ΠΈΠ½ΡΡ ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠ΅ΡΡ. Π£ Π―ΠΏΠΎΠ½ΠΈΠΈ Π΅ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠΈ Π½Π° 60 ΠΡ ΠΈ Π½Π° 50 ΠΡ. ΠΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ°Π»ΡΠ½Π°Ρ Π‘Π΅Π²Π΅ΡΠ½Π°Ρ ΠΠΌΠ΅ΡΠΈΠΊΠ°, ΡΠ°Π±ΠΎΡΠ°Ρ Π½Π° ΡΠ°ΡΡΠΎΡΠ΅ 60 ΠΡ, ΡΠ°Π·Π΄Π΅Π»Π΅Π½Π° Π½Π° ΠΎΠ±Π»Π°ΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ: ΠΠΎΡΡΠΎΠΊ, ΠΠ°ΠΏΠ°Π΄, Π’Π΅Ρ Π°Ρ, ΠΠ²Π΅Π±Π΅ΠΊ ΠΈ ΠΠ»ΡΡΠΊΠ°. ΠΡΠ°Π·ΠΈΠ»ΠΈΡ ΠΈ ΠΠ°ΡΠ°Π³Π²Π°ΠΉ , ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΎΠ³ΡΠΎΠΌΠ½ΡΡ Π³ΠΈΠ΄ΡΠΎΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΡ ΠΡΠ°ΠΉΠΏΡ , ΡΠ°Π±ΠΎΡΠ°ΡΡ Π½Π° 60 ΠΡ ΠΈ 50 ΠΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π£ΡΡΡΠΎΠΉΡΡΠ²Π° HVDC ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ²ΡΠ·Π°ΡΡ Π½Π΅ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈ ΠΏΠΎΡΠΎΠΊΠΎΠΌ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ.
ΠΠ΅Π½Π΅ΡΠ°ΡΠΎΡ , ΡΠ²ΡΠ·Π°Π½Π½ΡΠΉ Π΄Π»ΠΈΠ½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΠΌΠΎΠΆΠ΅Ρ ΡΡΠ°ΡΡ Π½Π΅ΡΡΡΠΎΠΉΡΠΈΠ²ΡΠΌ ΠΈ Π²ΡΠΏΠ°ΡΡΡ ΠΈΠ· ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ Ρ ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°. ΠΠΈΠ½ΠΈΡ HVDC ΠΌΠΎΠΆΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠΏΠΎΠ»Π½ΠΈΠΌΡΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΄Π°Π»Π΅Π½Π½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΠΉ. ΠΠ΅ΡΡΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°Π½ΡΠΈΠΈ , ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ ΠΎΡ Π±Π΅ΡΠ΅Π³Π°, ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π° HVDC, ΡΡΠΎΠ±Ρ ΡΠΎΠ±ΡΠ°ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ Ρ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π½Π΅ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠΎΠ² Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π½Π° Π±Π΅ΡΠ΅Π³ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΡΠΌ ΠΊΠ°Π±Π΅Π»Π΅ΠΌ.
ΠΠ΄Π½Π°ΠΊΠΎ, ΠΎΠ±ΡΡΠ½ΠΎ Π»ΠΈΠ½ΠΈΡ ΠΏΠΈΡΠ°Π½ΠΈΡ HVDC ΡΠ²ΡΠ·ΡΠ²Π°Π΅Ρ Π΄Π²Π΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°. Π£ΡΡΡΠΎΠΉΡΡΠ²Π°, Π²ΡΠΏΠΎΠ»Π½ΡΡΡΠΈΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΡΠΎΠΊΠ°ΠΌΠΈ, Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡ ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Π΅ΠΌΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΡΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ (ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ 50 ΠΊΠΌ Π΄Π»Ρ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΡΡ ΠΊΠ°Π±Π΅Π»Π΅ΠΉ, ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ 600β800 ΠΊΠΌ Π΄Π»Ρ Π²ΠΎΠ·Π΄ΡΡΠ½ΡΡ Π»ΠΈΠ½ΠΈΠΉ), ΠΌΠ΅Π½ΡΡΠ°Ρ ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² HVDC ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠΈΠ²Π°Π΅Ρ ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠΈ.
Converting electronics also provides the ability to effectively manage the power system by controlling the magnitude and flow of power, which gives an additional advantage of the existence of HVDC lines - a potential increase in the stability of the power system.
Use less stress
The development of Insulated Gate Bipolar Transistors (IGBTs) and Lockable Thyristors (GTOs) has made small HVDC systems more economical. They can be installed in existing AC power systems to stabilize power without increasing the short circuit current, as in the case of installing an additional AC power line. Such devices are developed by ABB and Siemens and are called βHVDC Lightβ and βHVDC PLUSβ, respectively. The use of such devices has expanded the use of HVDC to units of several tens of megawatts and lines of several kilometers of overhead line. The difference between the two technologies is in the concept of a stand-alone voltage inverter (VSI), while HVDC Light uses pulse-width modulation , HVDC PLUS is implemented on a multi-level inverter.
See also
- High-voltage direct current line Basslink
- High-voltage direct current line Volgograd-Donbass
- High-voltage direct current line Ekibastuz-Center
- Leyte-Luzon High Voltage DC Line
- High voltage direct current line Kontek
- Italy-Greece high-voltage direct current line
- High-voltage direct current line Cabora-Bass
- High-voltage direct current line Caprivi
- Moscow-Kashira high-voltage direct current line
- Hanam-Jeju High Voltage Direct Current Line
- DC insert Vyborg
- Research Institute for High Voltage DC Power Transmission
- Estlink
Notes
- β Narain G. Hingorani in IEEE Spectrum magazine, 1996.
- β About INELFE | Drupal www.inelfe.eu. Date of appeal April 20, 2017.
- β ACW's Insulator Info - Book Reference Info - History of Electrical Systems and Cables
- β RM Black The History of Electric Wires and Cables , Peter Perigrinus, London 1983 ISBN 086341 001 4 pages 94-96
- β Alfred Still, Overhead Electric Power Transmission , McGraw Hill, 1913 page 145, available from the Internet Archive
- β βShaping the Tools of Competitive Powerβ
- β Thomas P. Hughes, Networks of Power
- β βHVDC TransmissionFβ Archived on April 8, 2008.
- β IEEE - IEEE History Center Archived on March 6, 2006.
- β Vijay K. Sood. HVDC and FACTS Controllers: Applications Of Static Converters In Power Systems . - Springer-Verlag. - P. 1. - βThe first 25 years of HVDC transmission were sustained by converters having mercury arc valves till the mid-1970s. The next 25 years till the year 2000 were sustained by line-commutated converters using thyristor valves. It is predicted that the next 25 years will be dominated by force-commutated converters [4]. Initially, this new force-commutated era has commenced with Capacitor Commutated Converters (CCC) eventually to be replaced by self-commutated converters due to the economic availability of high power switching devices with their superior characteristics. " - ISBN 978-1402078903 .
- β ABB HVDC website
- β "HVDC multi-terminal system" (inaccessible link) . ABB Asea Brown Boveri (October 23, 2008). Date of treatment December 12, 2008. Archived December 7, 2008.
- β The Corsican tapping: from design to commissioning tests of the third terminal of the Sardinia-Corsica-Italy HVDC Billon, VC; Taisne, JP; Arcidiacono, V .; Mazzoldi, F .; Power Delivery, IEEE Transactions on Volume 4, Issue 1, Jan. 1989 Page (s): 794 - 799
- β Source works for a prominent UK engineering consultancy but has asked to remain anonymous and is a member of Claverton Energy Research Group
- β Basslink Archived on September 13, 2003. project
- β ABB HVDC Transmission QuΓ©bec - New England (unavailable link) website