Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

High voltage direct current line

A high voltage direct current power line ( HVDC ) uses direct current to transmit electricity, unlike the more common alternating current power lines (power lines). High-voltage DC power lines can be more economical when transmitting large volumes of electricity over long distances. The use of direct current for underwater power lines avoids the loss of reactive power due to the large cable capacity that inevitably occurs when using alternating current. In certain situations, DC power lines can be useful even at short distances, despite the high cost of equipment.

A DC power line allows you to transport electricity between unsynchronized AC power systems, and also helps to increase reliability by preventing cascading failures due to phase out of sync between the individual parts of a large power system. A DC power line also allows you to transfer electricity between AC power systems operating at different frequencies, for example, 50 Hz and 60 Hz. This method of transmission increases the stability of the energy systems, since if necessary they can use energy reserves from incompatible energy systems.

The modern HVDC transmission method uses technology developed in the 30s of the XX century by the Swedish company ASEA . One of the first HVDC systems was commissioned in the Soviet Union in 1950 between the cities of Moscow and Kashira (the German trophy equipment Project Elba was used), and in Sweden in 1954 from the mainland to the island of Gotland , with a system capacity of 10 -20 MW [1] .

The longest HVDC line in the world is currently located in Brazil and is used to transfer electricity generated by two hydroelectric power plants ( Santo Antoniu and Girau ) to the city of SΓ£o Paulo . Its total length is 2400 km, power - 3.15 GW.

HVDC systems in Western Europe. Red lines indicate existing lines, green lines under construction (the line connecting France and Spain - INELFE - has already been built [2] ), blue lines as proposed. Many of them transmit electricity from renewable sources such as water and wind.

Content

Working Principle

Power is equal to the product of voltage by current (P = U * I). Thus, by increasing the voltage, it is possible to reduce the current transmitted through the wire and, as a result, it is possible to reduce the cross-section of the wire required to transmit this power, which will reduce the cost of power lines.

To date, there is no way without large losses to change over a wide range of DC voltage. The most effective device for changing the voltage value is an AC transformer . Therefore, at the input of all high-voltage power lines of direct current, a transformer is installed to increase the alternating current voltage and equipment for converting alternating current to direct current, and at the output, equipment is used to convert direct current to alternating current and a transformer to reduce the voltage of this alternating current.

The first way to convert large powers from direct current to alternating current and vice versa was a motor-generator system , developed by Swiss engineer Rene Thouri . In simple words, at the power line input, the alternating current motor rotates the direct current generator, and at the output - the direct current motor rotates the alternating current generator. Such a system had a rather low efficiency and low reliability.

The practical use of a DC power line became possible only with the advent of a powerful arc electric device called a mercury rectifier .

Later, powerful semiconductor devices appeared - thyristors , insulated gate bipolar transistors ( IGBTs ), high-power insulated gate field effect transistors ( MOSFETs ) and lockable thyristors ( GTOs ).

The history of high voltage DC power lines

 
HVDC in 1971: This mercury valve with a working voltage of 150 kV converted AC to DC for transmission from Manitoba hydropower plants to remote cities.

The first DC power line for transmitting electricity over a long distance was launched in 1882 on the Misbach - Munich line . It transferred energy from a DC generator rotated by a steam engine to a furnace of a glass factory. The transmitted power was only 2.5 kW and there were no DC to AC converters on the line.

The first power transmission line, using the generator-motor current conversion method developed by Swiss engineer Rene Thury, was built in Italy in 1889 by Acquedotto de Ferrari-Galliera. To increase the voltage, the generator-motor pairs were connected in series. Each group was isolated from the ground and set in motion by the main engine. The line worked on direct current, with voltage up to 5000 V on each machine, some machines had dual switches to reduce voltage on each switch. This system transmitted power of 630 kW at a constant voltage of 14 kV over a distance of 120 km [3] [4] .

The Moutiers-Lyon transmission line transmitted 8600 kW of generated hydroelectric power to a distance of 124 miles, including 6 miles of underground cable. To convert the current, eight series-connected generators with double switches were used, which produced a voltage of 150 kV at the output. This line worked from about 1906 to 1936.

By 1913, there were fifteen TΓΌri power lines in the world [5] operating at a constant voltage of 100 kV, which were used until the 1930s, but rotating electric machines were unreliable, expensive to maintain, and had low efficiency. In the first half of the 20th century, other electromechanical devices were tested, but they were not widely used [6] .

To convert a high DC voltage to low, it was proposed to first charge the batteries connected in series, and then connect them in parallel and connect to the consumer [7] . At the beginning of the 20th century, there were at least two DC power lines that used this principle, but this technology did not receive further development due to the limited capacity of the batteries, an ineffective charge / discharge cycle, and the difficulty of switching between serial and parallel connection.

In the period from 1920 to 1940. mercury valves were used to convert current. In 1932, General Electric used 12 kV DC mercury valves in Mechanicville, New York , which was also used to convert the generated 40 Hz alternating current to a 60 Hz load alternating current. In 1941, a 115-kilometer underground cable line was developed, with a capacity of 60 MW, voltage +/- 200 kV, for the city of Berlin , using mercury valves ( Project Elba ), but due to the collapse of the Third Reich in 1945 the project was not completed [8] . The use of the cable was explained by the fact that during wartime, the underground cable would be a less visible target of bombing. The equipment was exported to the Soviet Union and was commissioned there in 1950 [9] .

The further use of mercury valves in 1954 laid the foundation for modern high-voltage DC power lines. The first such power line was created by ASEA between mainland Sweden and the island of Gotland. Mercury valves were used on all power lines built before 1975, but were later replaced by semiconductor devices. From 1975 to 2000 thyristors, which are now actively replaced by field-effect transistors, were widely used for current conversion [10] . With the transition to more reliable semiconductor devices, dozens of underwater high-voltage DC power lines were laid.

At the moment, there are only two power lines with converters on mercury valves in the world, all the rest have been dismantled or replaced by converters on thyristors. Mercury valves are used on power lines between the North and South islands of New Zealand and Vancouver Island power lines in Canada.

Advantages of high voltage DC power lines compared to AC power lines

The main advantage of high voltage direct current power lines is the ability to transmit large volumes of electricity over long distances with less loss than AC power lines. Depending on the line voltage and current conversion method, losses can be reduced to 3% per 1000 km. Energy transfer through a high voltage direct current power line allows the efficient use of electric power sources remote from load power nodes.

In some cases, a high voltage direct current power line is more efficient than an alternating current power line:

  • When transmitting energy through an underwater cable , which has a rather high capacity, which leads to losses in reactive power when using alternating current (for example, the 250 km Baltic Cable line between Sweden and Germany [11] ).
  • Transmission of energy in the power system directly from the power plant to the consumer, for example, in remote areas.
  • Increasing the capacity of the existing power system in cases where installing additional AC power lines is difficult or too expensive.
  • Power transmission and stabilization between non-synchronized AC power systems.
  • Connecting a remote power station to a power system , for example, the Nelson River Bipole line.
  • Reducing the cost of the line by reducing the number of conductors. In addition, thinner conductors may be used since the HVDC is not susceptible to surface effects .
  • Simplified energy transfer between power systems using different standards of voltage and frequency of alternating current.
  • Synchronization with a network of alternating current energy from renewable energy sources.

Long submarine cables have a high capacity . While this fact has a minimal role for direct current power transmission, alternating current leads to charging and discharging the cable capacity, causing additional power losses. In addition, AC power is spent on dielectric loss.

A high voltage DC power line can transmit more power through the conductor , since for a given rated power, the constant voltage in the direct current line is lower than the amplitude voltage in the alternating current line. AC power determines the actual voltage value, but it only makes up about 71% of the maximum amplitude voltage, which determines the actual insulation thickness and the distance between the conductors. Since the direct voltage of the direct current line is equal to the amplitude, it becomes possible to transmit 41% more power through the existing power line with conductors and insulation of the same size as alternating current, which reduces costs.

Since a high-voltage DC power line allows the transfer of energy between non-synchronized distribution systems of alternating current, this allows to increase the stability of the system, preventing the cascade spread of the accident from one part of the power system to another. Changes in the load leading to desynchronization of individual parts of the AC mains will not affect the DC line, and power flow through the DC line will stabilize the AC mains. The magnitude and direction of the power flow through the direct current line can be directly adjusted and changed to maintain the required state of the alternating current electric networks from both ends of the direct current line.

Disadvantages

The main disadvantage of high-voltage power lines of direct current is the need to convert the type of current from alternating to direct and vice versa. Used for this device require expensive spare parts, as, in fact, are unique to each line.

Current converters are expensive and have limited overload capacity. At small distances, the losses in the converters may be greater than in a similar AC power transmission line.

Unlike AC power lines, the implementation of multi-terminal DC power lines is extremely difficult, since it requires the expansion of existing circuits to multi-terminal ones. Power flow control in a multi-terminal DC system requires good communication between all consumers. High voltage DC circuit breakers have a more complex device, since before opening the contacts, it is necessary to reduce the current in the circuit to zero, otherwise an electric arc will form, leading to excessive wear of the contacts. Branched lines are rare. One of them works in the Hydro Quebec - New England system from Radisson to Sandy Pond [12] . Another system is the power transmission line connecting Sardinia and mainland Italy, which was rebuilt in 1989 to provide power to the island of Corsica [13] .

HVDC Transfer Costs

Typically, developers of high-voltage DC power lines, such as Alstom Grid , Siemens and ABB , do not publish information about the cost of the project, since this information is a commercial secret.

The cost varies widely depending on the specific features of the project, such as rated power, line length, air or underwater way of laying a route, the cost of land, and a change in the electrical AC network of each end of the line. A detailed comparison of the cost of a DC line versus the cost of an AC line may be required. Where the technical advantages of a direct current line do not matter, the choice is made from an economic comparison of options.

Based on some projects, we can highlight some information about the cost of a direct current power transmission line project:

For an 8-GW 40-km line under the English Channel, the approximate costs of primary equipment for a 500-kV bipolar HVDC line with a capacity of 2000 MW (excluding access roads, coastal work, coordination, equipment, insurance, etc.) amounted to: conversion stations - ~ Β£ 110 M, submarine cable + installation - ~ Β£ 1 M / km [ significance of fact? ] .

So, for a four-line power line between England and France with a capacity of 8 GW, the cost of installation work was a little more than Β£ 750 M. Also, Β£ 200-300 M were spent on additional coastal work [14] [ significance of fact? ] .

Straightening and inverting

Components

 
Two of the three thyristor valve kits used to transmit power over long distances from the dam in Manitoba

Earlier in the HVDC lines, mercury rectifiers were used that were unreliable. Two HVDC devices using mercury rectifiers are still in operation (2008). Thyristors were first used in HVDC devices in the 1960s. A thyristor is a semiconductor device similar to a diode , but with an additional output - a control electrode, which is used to turn on the device at a certain point in time. Insulated Gate Bipolar Transistors (IGBTs) are also used, which have better controllability but greater cost.

Since the voltage in HVDC devices in some cases reaches 800 kV, exceeding the breakdown voltage of a semiconductor device, HVDC converters are built using a large number of series-connected semiconductor devices.

The low-voltage control circuits used to turn on and off the thyristors must be galvanically isolated from high voltage power lines. Typically, this isolation is optical, direct or indirect. In an indirect control system, the low-voltage control electronics sends light pulses through the fiber to the high-voltage control electronics. The direct version dispenses with electronics on the high side: light pulses from the control electronics directly switch the photo thyristors .

ΠŸΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ элСмСнт Π² сборС, нСзависимо ΠΎΡ‚ Π΅Π³ΠΎ конструкции, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ называСтся Π²Π΅Π½Ρ‚ΠΈΠ»Π΅ΠΌ.

ВыпрямитСли ΠΈ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Ρ‹

Π’ выпрямлСнии ΠΈ инвСрсии ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΠΎ сущСству ΠΎΠ΄Π½ΠΈ ΠΈ Ρ‚Π΅ ΠΆΠ΅ Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ‹. МногиС подстанции настроСны Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½ΠΈ ΠΌΠΎΠ³Π»ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΈ ΠΊΠ°ΠΊ выпрямитСли, ΠΈ ΠΊΠ°ΠΊ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Ρ‹. Π‘ΠΎ стороны Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° Π½Π°Π±ΠΎΡ€ трансформаторов, часто ΠΈΠ· Ρ‚Ρ€Ρ‘Ρ… ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ΄Π½ΠΎΡ„Π°Π·Π½Ρ‹Ρ… трансформаторов, развязываСт ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΡ‚Π°Π½Ρ†ΠΈΡŽ ΠΎΡ‚ сСти ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°, обСспСчивая Π·Π°Π·Π΅ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΈ гарантируя ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ΅ постоянноС напряТСниС. Π’Ρ‹Ρ…ΠΎΠ΄Ρ‹ этих трансформаторов ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ ΠΊ выпрямитСлям ΠΏΠΎ мостовой схСмС, сформированной большим числом Π²Π΅Π½Ρ‚ΠΈΠ»Π΅ΠΉ. Базовая конфигурация выпрямитСля содСрТит ΡˆΠ΅ΡΡ‚ΡŒ Π²Π΅Π½Ρ‚ΠΈΠ»Π΅ΠΉ. Π‘Ρ…Π΅ΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ с Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΌ сдвигом Π² ΡˆΠ΅ΡΡ‚ΡŒΠ΄Π΅ΡΡΡ‚ градусов, поэтому Π² выпрямлСнном напряТСнии содСрТится Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊ.

Для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ гармоничСского состава примСняСтся схСма с 12 вСнтилями (Π΄Π²Π΅Π½Π°Π΄Ρ†Π°Ρ‚ΠΈΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ). ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ трансформатор ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π΅ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ (ΠΈΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π΄Π²Π° трансформатора), ΠΎΠ΄Π½Π° ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠΌΠ΅Π΅Ρ‚ соСдинСниС Β«Π·Π²Π΅Π·Π΄Π°Β», Π° другая β€” Β«Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΒ», Ρ‚Π΅ΠΌ самым обСспСчивая сдвиг Ρ„Π°Π·Ρ‹ Π² 30 градусов ΠΌΠ΅ΠΆΠ΄Ρƒ напряТСниями Π½Π° Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ°Ρ… трансформатора. К ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ Π²Ρ‹ΠΏΡ€ΡΠΌΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ мост, содСрТащий 6 Π²Π΅Π½Ρ‚ΠΈΠ»Π΅ΠΉ, Π²Ρ‹Π²ΠΎΠ΄Ρ‹ постоянного Ρ‚ΠΎΠΊΠ° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… соСдинСны. Π’Π΅ΠΌ самым обСспСчиваСтся Π΄Π²Π΅Π½Π°Π΄Ρ†Π°Ρ‚ΠΈΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ с Π»ΡƒΡ‡ΡˆΠΈΠΌ гармоничСским составом.

Π’ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ трансформаторам, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²Π°Ρ‚ΡŒ Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊΠΈ.

Π’ΠΈΠΏΡ‹ схСм

ΠœΠΎΠ½ΠΎΠΏΠΎΠ»ΡΡ€Π½Π°Ρ

Π’ монополярной схСмС ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ² выпрямитСля Π·Π°Π·Π΅ΠΌΠ»ΡΡŽΡ‚. Π”Ρ€ΡƒΠ³ΠΎΠΉ Π²Ρ‹Π²ΠΎΠ΄, с элСктричСским ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Π²Ρ‹ΡˆΠ΅ ΠΈΠ»ΠΈ Π½ΠΈΠΆΠ΅ Π·Π°Π·Π΅ΠΌΠ»Ρ‘Π½Π½ΠΎΠ³ΠΎ, связан с Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи. Π—Π°Π·Π΅ΠΌΠ»Ρ‘Π½Π½Ρ‹ΠΉ Π²Ρ‹Π²ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связан ΠΈΠ»ΠΈ Π½Π΅ связан с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π²Ρ‹Π²ΠΎΠ΄ΠΎΠΌ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Π½ΠΎΠΉ станции посрСдством Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°.

ΠŸΡ€ΠΈ отсутствии Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ мСталличСского ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚ΠΎΠΊ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Π² Π·Π΅ΠΌΠ»Π΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π·Π°Π·Π΅ΠΌΠ»Ρ‘Π½Π½Ρ‹ΠΌΠΈ Π²Ρ‹Π²ΠΎΠ΄Π°ΠΌΠΈ Π΄Π²ΡƒΡ… подстанций. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, это однопроводная схСма с Π·Π΅ΠΌΠ½Ρ‹ΠΌ Π²ΠΎΠ·Π²Ρ€Π°Ρ‚ΠΎΠΌ. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ создаСт Ρ‚ΠΎΠΊ, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉ Π² Π·Π΅ΠΌΠ»Π΅ ΠΈΠ»ΠΈ Π²ΠΎΠ΄Π΅, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚:

  • Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ…ΠΈΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΡŽ ΠΏΡ€ΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… Π² Π³Ρ€ΡƒΠ½Ρ‚Π΅ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… мСталличСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Ρ‹
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ…Π»ΠΎΡ€Π° ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ измСнСния состава морской Π²ΠΎΠ΄Ρ‹ ΠΎΡ‚ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰Π΅Π³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΏΡ€ΠΈ использовании Π΅Ρ‘ Π² качСствС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°.
  • Π’ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰Π΅Π΅ ΠΈΠ·-Π·Π° нСсбалансированного Ρ‚ΠΎΠΊΠ° ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, Π²Π»ΠΈΡΡŽΡ‰Π΅Π΅ Π½Π° ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ компасы судов, проходящих Π½Π°Π΄ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½Ρ‹ΠΌ ΠΊΠ°Π±Π΅Π»Π΅ΠΌ.

Π­Ρ‚ΠΈ воздСйствия ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ устранСны установкой мСталличСского ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΌΠ΅ΠΆΠ΄Ρƒ Π·Π°Π·Π΅ΠΌΠ»Ρ‘Π½Π½Ρ‹ΠΌΠΈ Π²Ρ‹Π²ΠΎΠ΄Π°ΠΌΠΈ ΠΎΠ±ΠΎΠΈΡ… ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ монополярной Π»ΠΈΠ½ΠΈΠΈ элСктропСрСдачи. Π’Π°ΠΊ ΠΊΠ°ΠΊ эти Π²Ρ‹Π²ΠΎΠ΄Ρ‹ Π·Π°Π·Π΅ΠΌΠ»Π΅Π½Ρ‹, Π½Π΅Ρ‚ нСобходимости Π² установкС изоляции ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° Π½Π° ΠΏΠΎΠ»Π½ΠΎΠ΅ напряТСниС ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ, Ρ‡Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ ΠΌΠ΅Π½Π΅Π΅ дорогостоящим, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ высокого напряТСния. РСшСниС ΠΎΠ± использовании мСталличСского ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° основываСтся Π½Π° экономичСских, тСхничСских ΠΈ экологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°Ρ… [15] .

Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ монополярныС систСмы Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ сСти ΠΏΠ΅Ρ€Π΅Π΄Π°ΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 1500 ΠœΠ’Ρ‚. ΠŸΡ€ΠΈ использовании ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ кабСля ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ составляСт 600 ΠœΠ’Ρ‚.

Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ монополярных систСм Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ для Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ Π΄ΠΎ биполярной схСмы. ΠžΠΏΠΎΡ€Ρ‹ Π»ΠΈΠ½ΠΈΠΈ элСктропСрСдачи ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ нСсти Π΄Π²Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°, Π΄Π°ΠΆΠ΅ Ссли ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ Π² монополярной систСмС. Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΈΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ с Π΄Ρ€ΡƒΠ³ΠΈΠΌ (ΠΊΠ°ΠΊ Π² случаС Балтийского кабСля ).

Биполярная

Π’ биполярной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΠ°Ρ€Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ полярности, ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΏΠΎΠ΄ высоким напряТСниСм ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π΅ΠΌΠ»ΠΈ. Π‘Ρ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ биполярной Π»ΠΈΠ½ΠΈΠΈ элСктропСрСдачи Π²Ρ‹ΡˆΠ΅ монополярной схСмы с ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠΌ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ±Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΈΠ·ΠΎΠ»ΡΡ†ΠΈΡŽ Π½Π° ΠΏΠΎΠ»Π½ΠΎΠ΅ напряТСниС. Однако прСимущСства биполярной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π΅Π»Π°ΡŽΡ‚ Π΅Ρ‘ Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с монополярной. ΠŸΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅ Π² Π·Π΅ΠΌΠ»Π΅ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‚ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΠΊΠΈ, ΠΊΠ°ΠΊ ΠΈ Π² случаС монополярной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ с мСталличСским ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠΌ. Π­Ρ‚ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Π² Π·Π΅ΠΌΠ»Π΅ ΠΈ сниТаСт экологичСскоС воздСйствиС. ΠŸΡ€ΠΈ Π°Π²Π°Ρ€ΠΈΠΈ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π»ΠΈΠ½ΠΈΠΉ биполярной систСмы ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ, пСрСдавая ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ номинальной мощности ΠΏΠΎ Π½Π΅ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Ρ‘Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π² монополярном Ρ€Π΅ΠΆΠΈΠΌΠ΅ с использованиСм Π·Π΅ΠΌΠ»ΠΈ Π² Ρ€ΠΎΠ»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°. На ΠΎΡ‡Π΅Π½ΡŒ нСблагоприятной мСстности Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½ Π½Π° нСзависимом Π½Π°Π±ΠΎΡ€Π΅ ΠΎΠΏΠΎΡ€ Π›Π­ΠŸ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π»ΠΈΠ½ΠΈΠΉ Ρ‡Π°ΡΡ‚ΡŒ мощности ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Π»Π°ΡΡŒ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»ΡŽ. Π’Π°ΠΊ ΠΊΠ°ΠΊ для Π΄Π°Π½Π½ΠΎΠΉ номинальной мощности ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΡƒ биполярной Π»ΠΈΠ½ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° Ρ‚ΠΎΠΊΠ° монополярной Π»ΠΈΠ½ΠΈΠΈ, ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° мСньшС ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠΌ монополярной Π»ΠΈΠ½ΠΈΠΈ Ρ‚ΠΎΠΉ ΠΆΠ΅ мощности.

БиполярноС устройство Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оснащСно мСталличСским ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠΌ.

БиполярныС устройства ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒ Π΄ΠΎ 3200 ΠœΠ’Ρ‚ Π½Π° напряТСнии +/-600 ΠΊΠ’. Подводная кабСльная линия, ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ сооруТСнная ΠΊΠ°ΠΊ монополярная, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΌΠΎΠ΄Π΅Ρ€Π½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ кабСлями ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π² биполярном Ρ€Π΅ΠΆΠΈΠΌΠ΅.

Вставка постоянного Ρ‚ΠΎΠΊΠ°

Вставка постоянного Ρ‚ΠΎΠΊΠ° являСтся станциСй, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Ρ‹ ΠΈ выпрямитСли находятся Π² ΠΎΠ΄Π½ΠΎΠΌ мСстС, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈ Ρ‚ΠΎΠΌ ΠΆΠ΅ Π·Π΄Π°Π½ΠΈΠΈ. Линия постоянного Ρ‚ΠΎΠΊΠ° выполняСтся Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠΉ, насколько Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. Вставки постоянного Ρ‚ΠΎΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для: соСдинСния ΠΌΠ°Π³ΠΈΡΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ частоты (ΠΊΠ°ΠΊ Π² Π―ΠΏΠΎΠ½ΠΈΠΈ), соСдинСния Π΄Π²ΡƒΡ… элСктричСских сСтСй Ρ‚ΠΎΠΉ ΠΆΠ΅ самой номинальной частоты, Π½ΠΎ Ρ€Π°Π·Π½Ρ‹Ρ… нСфиксированных Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… сдвигов (ΠΊΠ°ΠΊ Π΄ΠΎ 1995/96 Π² ΠΊΠΎΠΌΠΌΡƒΠ½Π΅ Π­Ρ‚Ρ†Π΅Π½Ρ€ΠΈΡ…Ρ‚ ).

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° постоянного напряТСния Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΉ схСмС вставки постоянного Ρ‚ΠΎΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½Π° свободно ΠΈΠ·-Π·Π° ΠΌΠ°Π»ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ Π»ΠΈΠ½ΠΈΠΈ. ΠžΠ±Ρ‹Ρ‡Π½ΠΎ постоянноС напряТСниС Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ Π½ΠΈΠ·ΠΊΠΈΠΌ, насколько Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ мСньший Π·Π°Π» для ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΈ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… соСдинСний Π²Π΅Π½Ρ‚ΠΈΠ»Π΅ΠΉ. По этой ΠΆΠ΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅ Π²ΠΎ вставкС постоянного Ρ‚ΠΎΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΡΠΈΠ»ΡŒΠ½ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Π²Π΅Π½Ρ‚ΠΈΠ»ΠΈ.

БистСмы с линиями элСктропСрСдачи

Бамая общая конфигурация Π»ΠΈΠ½ΠΈΠΈ HVDC β€” это Π΄Π²Π΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ станции ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ / Π²Ρ‹ΠΏΡ€ΡΠΌΠΈΡ‚Π΅Π»ΡŒ , связанныС Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ. Вакая ΠΆΠ΅ конфигурация ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² соСдинСнии нСсинхронизированных энСргосистСм, Π² ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ энСргии Π½Π° большиС расстояния, ΠΈ Π² случаС использования ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠ°Π±Π΅Π»Π΅ΠΉ.

ΠœΡƒΠ»ΡŒΡ‚ΠΈΡ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Π°Ρ HVDC линия, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡƒΡ… ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ², Ρ€Π΅Π΄ΠΊΠ°. ΠšΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΡ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠΉ систСмы ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ, ΠΈΠ»ΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ (ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ-ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ). ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ конфигурация Ρ‡Π°Ρ‰Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ энСргии ΠΎΡ‚ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… элСктростанций, Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ β€” ΠΎΡ‚ ΠΌΠ΅Π½Π΅Π΅ ΠΌΠΎΡ‰Π½Ρ‹Ρ… элСктростанций. НапримСр, систСма Quebec-New England ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ 2000 ΠœΠ’Ρ‚, открытая Π² 1992, Π² настоящСС врСмя являСтся ΠΊΡ€ΡƒΠΏΠ½Π΅ΠΉΡˆΠ΅ΠΉ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠΉ HVDC систСмой Π² ΠΌΠΈΡ€Π΅ [16] .

ВрСхполярная

ЗапатСнтованная Π² 2004 Π³ΠΎΠ΄Ρƒ схСма ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° для ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π»ΠΈΠ½ΠΈΠΉ элСктропСрСдачи ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° Π½Π° HVDC. Π”Π²Π° ΠΈΠ· Ρ‚Ρ€Π΅Ρ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² схСмы Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π² биполярном Ρ€Π΅ΠΆΠΈΠΌΠ΅. Π’Ρ€Π΅Ρ‚ΠΈΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ монополь, ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ рСвСрсными вСнтилями (ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ вСнтилями, Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ полярности). ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ монополь пСриодичСски ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ Ρ‚ΠΎΠΊ ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ полюса ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ, ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΏΠΎΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ Π½Π° нСсколько ΠΌΠΈΠ½ΡƒΡ‚. Π‘Π΅Π· измСнСния полярности Π² систСмС с ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»Π΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π±Ρ‹Π» Π±Ρ‹ Π·Π°Π³Ρ€ΡƒΠΆΠ΅Π½ Π½Π° +/-100 % ΠΏΠΎ Π½Π°Π³Ρ€Π΅Π²Ρƒ, биполярныС ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΈ Π±Ρ‹ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Ρ‹ ΠΈΠ»ΠΈ Π½Π° 137 % ΠΈΠ»ΠΈ Π½Π° 37 %. Π’ случаС с ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΉΡΡ ΠΏΠΎΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒΡŽ, суммарный срСднСквадратичный Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ эффСкт Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² случаС, Ссли Π±Ρ‹ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Π°Π» ΠΏΡ€ΠΈ номинальном Ρ‚ΠΎΠΊΠ΅. Π­Ρ‚ΠΎ позволяСт ΠΏΡ€ΠΎΠΏΡƒΡΠΊΠ°Ρ‚ΡŒ большиС Ρ‚ΠΎΠΊΠΈ ΠΏΠΎ биполярным ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°ΠΌ, ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ энСргии. Π”Π°ΠΆΠ΅ ΠΊΠΎΠ³Π΄Π° энСргопотрСблСниС Π½ΠΈΠ·ΠΊΠΎΠ΅, высокиС Ρ‚ΠΎΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°ΠΌ Π»ΠΈΠ½ΠΈΠΈ для удалСния с Π½ΠΈΡ… льда.

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° Π² Ρ‚Ρ€Ρ‘Ρ…ΠΏΠΎΠ»ΡΡ€Π½ΡƒΡŽ систСму позволяСт ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒ Π΄ΠΎ 80 % большС мощности ΠΏΡ€ΠΈ Ρ‚ΠΎΠΌ ΠΆΠ΅ самом Ρ„Π°Π·Π½ΠΎΠΌ напряТСнии с использованиСм Ρ‚ΠΎΠΉ ΠΆΠ΅ самой Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ, ΠΎΠΏΠΎΡ€ ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². НСкоторыС Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π΄ΠΎ ΠΈΡ… Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π° ΠΈΠ·-Π·Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ устойчивости систСмы, надСТности ΠΈ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π² HVDC Π»ΠΈΠ½ΠΈΠΈ.

Врёхполярная систСма Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π±Π΅Π· ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°. Π’Π°ΠΊ ΠΊΠ°ΠΊ авария ΠΎΠ΄Π½ΠΎΠ³ΠΎ полюса прСобразоватСля ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ ΠΌΠ°Π»ΠΎΠΉ ΠΏΠΎΡ‚Π΅Ρ€Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π° ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚ΠΎΠΊ, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉ Π² Π·Π΅ΠΌΠ»Π΅, Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚, Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ этой схСмы высока, Π±Π΅Π· Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π½Π° ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅.

На 2005 Π³ΠΎΠ΄ Π½Π΅ Π±Ρ‹Π»ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π»ΠΈΠ½ΠΈΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° Π² Ρ‚Ρ€Ρ‘Ρ…ΠΏΠΎΠ»ΡΡ€Π½ΡƒΡŽ систСму, хотя линия элСктропСрСдачи Π² Индии Π±Ρ‹Π»Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° Π² Π±ΠΈΠΏΠΎΠ»ΡΡ€Π½ΡƒΡŽ HVDC.

ΠšΠΎΡ€ΠΎΠ½Π½Ρ‹ΠΉ разряд

ΠšΠΎΡ€ΠΎΠ½Π½Ρ‹ΠΉ разряд β€” это характСрная Ρ„ΠΎΡ€ΠΌΠ° ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ разряда, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰Π΅Π³ΠΎ Π² Ρ€Π΅Π·ΠΊΠΎ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… полях. Π­Ρ‚ΠΎ явлСниС ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π·Π²Π°Ρ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ мощности, ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΡΠ»Ρ‹ΡˆΠΈΠΌΡ‹Π΅ ΠΈ радиочастотныС ΠΏΠΎΠΌΠ΅Ρ…ΠΈ, ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ ядовитыС смСси, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ оксиды Π°Π·ΠΎΡ‚Π° ΠΈ ΠΎΠ·ΠΎΠ½, ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ΅ свСчСниС.

Π›ΠΈΠ½ΠΈΠΈ элСктропСрСдачи ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈ постоянного Ρ‚ΠΎΠΊΠ° ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΊΠΎΡ€ΠΎΠ½Π½Ρ‹Π΅ разряды, Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ случаС Π² Ρ„ΠΎΡ€ΠΌΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡŽΡ‰ΠΈΡ…ΡΡ частиц, Π² послСднСм β€” постоянного ΠΏΠΎΡ‚ΠΎΠΊΠ°. ΠšΠΎΡ€ΠΎΠ½Π½Ρ‹ΠΉ разряд Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ мощности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ ΠΎΡ‚ всСх ΠΏΠΎΡ‚Π΅Ρ€ΡŒ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π΄Π»ΠΈΠ½Ρ‹ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° высокого напряТСния, нСсущСго Ρ‚ΠΎ ΠΆΠ΅ самоС количСство мощности. Π’ монополярной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ Π²Ρ‹Π±ΠΎΡ€ полярности ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° опрСдСляСтся ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ создания ΠΊΠΎΡ€ΠΎΠ½Π½Ρ‹Ρ… разрядов, влияния Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду. ΠžΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΡ€ΠΎΠ½Π½Ρ‹Π΅ разряды производят Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ большС ΠΎΠ·ΠΎΠ½Π° Ρ‡Π΅ΠΌ ΠΊΠΎΡ€ΠΎΠ½Π½Ρ‹Π΅ разряды ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, воздСйствуя Π½Π° Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΠ΅. ИспользованиС напряТСния ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΠΎΠ±ΡŠΡ‘ΠΌ создаваСмого ΠΎΠ·ΠΎΠ½Π° монополярной Π»ΠΈΠ½ΠΈΠΈ HVDC.

Application

Overview

Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ управлСния ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ мощности, соСдинСниС нСсинхронизированных систСм ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°, эффСктивноС использованиС ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ энСргии ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ кабСлями Π΄Π΅Π»Π°ΡŽΡ‚ HVDC систСмы ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ для использования Π½Π° ΠΌΠ΅ΠΆΠ½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅. ВСтроэлСктростанции часто Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ΡΡ Π½Π° расстоянии 10-12 ΠΊΠΌ ΠΎΡ‚ Π±Π΅Ρ€Π΅Π³Π° (Π° ΠΈΠ½ΠΎΠ³Π΄Π° ΠΈ дальшС) ΠΈ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠ°Π±Π΅Π»Π΅ΠΉ ΠΈ синхронизации ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ энСргии. ΠŸΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ энСргии Π½Π° ΠΎΡ‡Π΅Π½ΡŒ большиС расстояния, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π² ΠΎΡ‚Π΄Π°Π»Ρ‘Π½Π½Ρ‹Π΅ Ρ€Π°ΠΉΠΎΠ½Ρ‹ Π‘ΠΈΠ±ΠΈΡ€ΠΈ , ΠšΠ°Π½Π°Π΄Ρ‹ ΠΈ скандинавского сСвСра, Π²Ρ‹Π±ΠΎΡ€ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ склоняСтся Π² сторону мСньшСй стоимости Π»ΠΈΠ½ΠΈΠΈ HVDC. Π”Ρ€ΡƒΠ³ΠΈΠ΅ примСнСния HVDC систСм Π±Ρ‹Π»ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Π²Ρ‹ΡˆΠ΅.

ОбъСдинСния элСктричСской сСти ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°

Π›ΠΈΠ½ΠΈΠΈ элСктропСрСдачи ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ синхронизированныС элСктричСскиС сСти ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π½Π° Ρ‚ΠΎΠΉ ΠΆΠ΅ самой частотС ΠΈ Π² Ρ„Π°Π·Π΅. Много Π·ΠΎΠ½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΆΠ΅Π»Π°ΡŽΡ‚ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ энСргиСй, ΠΈΠΌΠ΅ΡŽΡ‚ нСсинхронизированныС элСктричСскиС сСти. ЭнСргосистСмы Π’Π΅Π»ΠΈΠΊΠΎΠ±Ρ€ΠΈΡ‚Π°Π½ΠΈΠΈ , сСвСрной Π•Π²Ρ€ΠΎΠΏΡ‹ ΠΈ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π•Π²Ρ€ΠΎΠΏΡ‹ Π½Π΅ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Ρ‹ Π² Π΅Π΄ΠΈΠ½ΡƒΡŽ ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΠ΅Ρ‚ΡŒ. Π£ Π―ΠΏΠΎΠ½ΠΈΠΈ Π΅ΡΡ‚ΡŒ элСктричСскиС сСти Π½Π° 60 Π“Ρ† ΠΈ Π½Π° 50 Π“Ρ†. ΠšΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ БСвСрная АмСрика, работая Π½Π° частотС 60 Π“Ρ†, Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Π° Π½Π° области, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ нСсинхронизированы: Восток, Π—Π°ΠΏΠ°Π΄, ВСхас, КвСбСк ΠΈ Аляска. Бразилия ΠΈ ΠŸΠ°Ρ€Π°Π³Π²Π°ΠΉ , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ совмСстно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ Π³ΠΈΠ΄Ρ€ΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡΡ‚Π°Π½Ρ†ΠΈΡŽ Π˜Ρ‚Π°ΠΉΠΏΡƒ , Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π½Π° 60 Π“Ρ† ΠΈ 50 Π“Ρ† соотвСтствСнно. Устройства HVDC ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ²ΡΠ·Π°Ρ‚ΡŒ нСсинхронизированныС элСктричСскиС сСти ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ управлСния напряТСниСм ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности.

Π“Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ , связанный Π΄Π»ΠΈΠ½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°, ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ нСустойчивым ΠΈ Π²Ρ‹ΠΏΠ°ΡΡ‚ΡŒ ΠΈΠ· синхронизации с ΠΎΡ‚Π΄Π°Π»Π΅Π½Π½ΠΎΠΉ энСргосистСмой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°. Линия HVDC ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌΡ‹ΠΌ использованиС ΡƒΠ΄Π°Π»Π΅Π½Π½Ρ‹Ρ… элСктростанций. ВСтряныС элСктростанции , располоТСнныС Π½Π° расстоянии ΠΎΡ‚ Π±Π΅Ρ€Π΅Π³Π°, ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ устройства HVDC, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΎΠ±Ρ€Π°Ρ‚ΡŒ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ Ρƒ большого числа нСсинхронизированных Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠ² для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π½Π° Π±Π΅Ρ€Π΅Π³ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½Ρ‹ΠΌ ΠΊΠ°Π±Π΅Π»Π΅ΠΌ.

Однако, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ линия питания HVDC связываСт Π΄Π²Π΅ области распрСдСлСния мощности энСргосистСмы ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ°. Устройства, Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‰ΠΈΠ΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΈ постоянным Ρ‚ΠΎΠΊΠ°ΠΌΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Π΅ΠΌΠΎΠΉ энСргии. Π’Ρ‹ΡˆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ расстояния (ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 50 ΠΊΠΌ для ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠ°Π±Π΅Π»Π΅ΠΉ, ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 600β€”800 ΠΊΠΌ для Π²ΠΎΠ·Π΄ΡƒΡˆΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ), мСньшая ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ элСктричСских ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² HVDC ΠΏΠ΅Ρ€Π΅Π²Π΅ΡˆΠΈΠ²Π°Π΅Ρ‚ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ элСктроники.

Converting electronics also provides the ability to effectively manage the power system by controlling the magnitude and flow of power, which gives an additional advantage of the existence of HVDC lines - a potential increase in the stability of the power system.

Use less stress

The development of Insulated Gate Bipolar Transistors (IGBTs) and Lockable Thyristors (GTOs) has made small HVDC systems more economical. They can be installed in existing AC power systems to stabilize power without increasing the short circuit current, as in the case of installing an additional AC power line. Such devices are developed by ABB and Siemens and are called β€œHVDC Light” and β€œHVDC PLUS”, respectively. The use of such devices has expanded the use of HVDC to units of several tens of megawatts and lines of several kilometers of overhead line. The difference between the two technologies is in the concept of a stand-alone voltage inverter (VSI), while HVDC Light uses pulse-width modulation , HVDC PLUS is implemented on a multi-level inverter.

See also

  • High-voltage direct current line Basslink
  • High-voltage direct current line Volgograd-Donbass
  • High-voltage direct current line Ekibastuz-Center
  • Leyte-Luzon High Voltage DC Line
  • High voltage direct current line Kontek
  • Italy-Greece high-voltage direct current line
  • High-voltage direct current line Cabora-Bass
  • High-voltage direct current line Caprivi
  • Moscow-Kashira high-voltage direct current line
  • Hanam-Jeju High Voltage Direct Current Line
  • DC insert Vyborg
  • Research Institute for High Voltage DC Power Transmission
  • Estlink

Notes

  1. ↑ Narain G. Hingorani in IEEE Spectrum magazine, 1996.
  2. ↑ About INELFE | Drupal www.inelfe.eu. Date of appeal April 20, 2017.
  3. ↑ ACW's Insulator Info - Book Reference Info - History of Electrical Systems and Cables
  4. ↑ RM Black The History of Electric Wires and Cables , Peter Perigrinus, London 1983 ISBN 086341 001 4 pages 94-96
  5. ↑ Alfred Still, Overhead Electric Power Transmission , McGraw Hill, 1913 page 145, available from the Internet Archive
  6. ↑ β€œShaping the Tools of Competitive Power”
  7. ↑ Thomas P. Hughes, Networks of Power
  8. ↑ β€œHVDC TransmissionF” Archived on April 8, 2008.
  9. ↑ IEEE - IEEE History Center Archived on March 6, 2006.
  10. ↑ Vijay K. Sood. HVDC and FACTS Controllers: Applications Of Static Converters In Power Systems . - Springer-Verlag. - P. 1. - β€œThe first 25 years of HVDC transmission were sustained by converters having mercury arc valves till the mid-1970s. The next 25 years till the year 2000 were sustained by line-commutated converters using thyristor valves. It is predicted that the next 25 years will be dominated by force-commutated converters [4]. Initially, this new force-commutated era has commenced with Capacitor Commutated Converters (CCC) eventually to be replaced by self-commutated converters due to the economic availability of high power switching devices with their superior characteristics. " - ISBN 978-1402078903 .
  11. ↑ ABB HVDC website
  12. ↑ "HVDC multi-terminal system" (unspecified) (inaccessible link) . ABB Asea Brown Boveri (October 23, 2008). Date of treatment December 12, 2008. Archived December 7, 2008.
  13. ↑ The Corsican tapping: from design to commissioning tests of the third terminal of the Sardinia-Corsica-Italy HVDC Billon, VC; Taisne, JP; Arcidiacono, V .; Mazzoldi, F .; Power Delivery, IEEE Transactions on Volume 4, Issue 1, Jan. 1989 Page (s): 794 - 799
  14. ↑ Source works for a prominent UK engineering consultancy but has asked to remain anonymous and is a member of Claverton Energy Research Group
  15. ↑ Basslink Archived on September 13, 2003. project
  16. ↑ ABB HVDC Transmission QuΓ©bec - New England (unavailable link) website
Source - https://ru.wikipedia.org/w/index.php?title= High - voltage constant - current_line&oldid = 100749742


More articles:

  • Shutovka (Gomel region)
  • Dezginzha
  • Jeronimus Legless Lizard
  • Nakhova, Irina Isaevna
  • Holy Scripture in Islam
  • Demer
  • Severodonetsk City Drama Theater
  • 1834 in literature
  • Fudge
  • I Look to You

All articles

Clever Geek | 2019