Clever Geek Handbook
📜 ⬆️ ⬇️

Smooth bundle

A smooth bundle is a locally trivial bundle with smooth transition functions.

Definition

Let beY {\ displaystyle Y} Y andX {\ displaystyle X} X - smooth manifolds . Epimorphism of varietiesπ:Y→X {\ displaystyle \ pi \ colon Y \ to X} {\displaystyle \pi \colon Y\to X} called smooth delamination if exist: open cover(Ui) {\ displaystyle (U_ {i})} {\displaystyle (U_{i})} varietiesX {\ displaystyle X} X varietyV {\ displaystyle V} V and the family of diffeomorphismsφi:π-one(Ui)→Ui×V {\ displaystyle \ varphi _ {i} \ colon \ pi ^ {- 1} (U_ {i}) \ to U_ {i} \ times V} {\displaystyle \varphi _{i}\colon \pi ^{-1}(U_{i})\to U_{i}\times V} related smooth transition functionsρij=φiφj-one {\ displaystyle \ rho _ {ij} = \ varphi _ {i} \ varphi _ {j} ^ {- 1}} {\displaystyle \rho _{ij}=\varphi _{i}\varphi _{j}^{-1}} onUi∩Uj×V {\ displaystyle U_ {i} \ cap U_ {j} \ times V} {\displaystyle U_{i}\cap U_{j}\times V} .

A smooth bundle is a locally trivial bundle with a bundle space.Y {\ displaystyle Y} Y baseX {\ displaystyle X} X typical layerV {\ displaystyle V} V and satin layering(Ui,φi,ρij) {\ displaystyle (U_ {i}, \; \ varphi _ {i}, \; \ rho _ {ij})} {\displaystyle (U_{i},\;\varphi _{i},\;\rho _{ij})} . Closed subvarietyπ-one(x)⊂Y {\ displaystyle \ pi ^ {- 1} (x) \ subset Y} {\displaystyle \pi ^{-1}(x)\subset Y} called a typical layer of a smooth bundle at a pointx∈X {\ displaystyle x \ in X} x\in X .

Examples

  • Vector bundle , in particular the tangent bundle
  • Main bundle

Properties

  • Space bundleY {\ displaystyle Y} Y endowed with coordinate atlas(xμ,ya) {\ displaystyle (x ^ {\ mu}, \; y ^ {a})} {\displaystyle (x^{\mu },\;y^{a})} where(ya) {\ displaystyle (y ^ {a})} {\displaystyle (y^{a})} - coordinates onV {\ displaystyle V} V and(xμ) {\ displaystyle (x ^ {\ mu})} {\displaystyle (x^{\mu })} - coordinates onX {\ displaystyle X} X whose transition functions are independent of coordinates(ya) {\ displaystyle (y ^ {a})} {\displaystyle (y^{a})} .
  • For every pointx∈X {\ displaystyle x \ in X} x\in X there is an open neighborhoodU {\ displaystyle U} U and attachments:U→Y {\ displaystyle s \ colon U \ to Y} {\displaystyle s\colon U\to Y} such thatπ∘s=Id(U) {\ displaystyle \ pi \ circ s = \ mathrm {Id} \, (U)} {\displaystyle \pi \circ s=\mathrm {Id} \,(U)} . This map is called a (local) section of a smooth bundle.

Variations and generalizations

  • Foliation
  • Superbundle
  • Graduated stratification
  • Banach and Hilbert bundles

Literature

  • Greub, W., Halperin S., Vanstone R. Connections, curvature and cohomology, vol. I — III. - N.-Y .: Academic Press, 1972-1976.
  • Kobayashi Sh., Nomizu K. Basics of differential geometry. - M .: Science, 1981. - T. 1. - 344 p.
  • Sardanashvili G. A. Modern methods of field theory. 1. Geometry and classical fields. - M .: URSS, 1996. - 224 p. - ISBN 5-88417-087-4 . .
  • Sardanashvily, G. , Fiber bundles, jet manifolds and Lagrangian theory. Lectures for theoreticians, arXiv: 0908.1886
Source - https://ru.wikipedia.org/w/index.php?title=Smooth_bundle&oldid=76933481


More articles:

  • 1846 in literature
  • Del Martin and Phyllis Lyon
  • Lugovaya, Irina Nikolaevna
  • Africa Basketball Championship 2009
  • Baku TV Tower
  • Brave (Crimea)
  • Muravsky, Valery Fedorovich
  • Zhuruena (river)
  • Ust-Tosnenskaya (platform)
  • Melangella

All articles

Clever Geek | 2019