Clever Geek Handbook
📜 ⬆️ ⬇️

Homogeneous space

Homogeneous space - manyM {\ displaystyle M} M together with the transitive action of some group given on itG {\ displaystyle G} G . Elements of the set M are called points of a homogeneous space, the groupG {\ displaystyle G} G - a group of movements , or the main group of a homogeneous space.

Content

  • 1 Related Definitions
  • 2 Examples
  • 3 Properties
  • 4 Literature

Related Definitions

  • Any pointx {\ displaystyle x}   homogeneous spaceM {\ displaystyle M}   defines a subgroup
    Gx={g∈G|gx=x}{\ displaystyle G_ {x} = \ {g \ in G | gx = x \}}  
main groupG {\ displaystyle G}   . It is called an isotropy group , or a stationary subgroup , or a point stabilizerx {\ displaystyle x}   . Stabilizers of different points are paired in a groupG {\ displaystyle G}   using internal automorphisms .

Examples

  • With an arbitrary subgroupH {\ displaystyle H}   groupsG {\ displaystyle G}   connected some homogeneous group spaceG {\ displaystyle G}   - a bunch ofM=G/H {\ displaystyle M = G / H}   left group adjacency classesG {\ displaystyle G}   by subgroupH {\ displaystyle H}   , on whichG {\ displaystyle G}   acts according to the formula
    g(aH)=(ga)H{\ displaystyle g (aH) = (ga) H}   ,g,a∈G {\ displaystyle g, a \ in G}   .
This homogeneous space is called the quotient space of the groupG {\ displaystyle G}   by subgroupH {\ displaystyle H}   , and the subgroupH {\ displaystyle H}   turns out to be a point stabilizereH=H {\ displaystyle eH = H}   this space (e {\ displaystyle e}   - unit of groupG {\ displaystyle G}   )

Properties

  • Any homogeneous spaceM {\ displaystyle M}   groupsG {\ displaystyle G}   can be identified with the factor space of the groupG {\ displaystyle G}   by subgroupH=Gx {\ displaystyle H = G_ {x}}   fixed point stabilizerx∈M {\ displaystyle x \ in M}   .
  • If the groupG {\ displaystyle G}   is a topological group , andH {\ displaystyle H}   - its subgroup (in particular, ifG {\ displaystyle G}   - Lee's group , andH {\ displaystyle H}   Is a closed subgroup ofG {\ displaystyle G}   ), then the factor spaceM=G/H {\ displaystyle M = G / H}   canonically equipped with the structure of a topological space (respectively, the structure of an analytic manifold), with respect to which the action ofG {\ displaystyle G}   onM {\ displaystyle M}   is continuous (respectively analytical).
    • If the group is LeeG {\ displaystyle G}   transitively and analytically acts on an analytic manifoldM {\ displaystyle M}   then for any pointx∈M {\ displaystyle x \ in M}   subgroupH=Gx {\ displaystyle H = G_ {x}}   closed and the above bijection is analytic; if at the same time the number of connected components of the groupG {\ displaystyle G}   no more than countable , then this bijection is a diffeomorphism .

Literature

  • Balashchenko V.V., Nikonorov Yu.G., Rodionov E.D., Slavsky V.V. Homogeneous spaces: theory and applications. - 2008.
Source - https://ru.wikipedia.org/w/index.php?title=Homogeneous_space&oldid=100570248


More articles:

  • Itsudatte My Santa!
  • P402 (highway)
  • Portrait of Maria Lopukhina
  • Egidius (Army Master)
  • Love 2.0
  • Dancing Queen
  • Cardinal Priest
  • List of Heads of State in 2003
  • Battle of Naxos
  • Chase (Tale)

All articles

Clever Geek | 2019