Clever Geek Handbook
📜 ⬆️ ⬇️

Van Obel theorem on the quadrilateral

Van Obel's theorem ( Van Aubel [1] or, in some sources, Van Obel [2] ) —the theorem of the Flemish mathematician Van Aubel (or van Obele, Henricus Hubertus van Aubel) proved in 1878. [3] .

This is a particular case of the Peter – Douglas – Neumann theorem [1] , and Tebo’s theorem follows from its very own theorem .

Content

Formulation

 
The theorem can be applied to self-intersecting quadrangles.

If on the sides of an arbitrary non-self-intersecting quadrilateral to construct squares externally and connect the centers of the opposite, then the resulting segments will be equal and perpendicular . (See pic.)

Literature

  • van Aubel, HH "Note concernant les centers de carrés construits sur les côtés d'un polygon quelconque." Nouv. Corresp. Math 4, 40-44, 1878. (Fr.)
  • Ponarin Ya. P. Elementary geometry. In 2 t. - Moscow : ICNMO , 2004. - p. 24. - ISBN 5-94057-170-0 .
  • Dm Yefremov New Triangle Geometry 1902
  • Zetel S.I. The new geometry of the triangle. M: Uchpedgiz, 1962. 153 p.

Notes

  1. ↑ 1 2 Weisstein, Eric W. van Aubel's Theorem (Eng.) On Wolfram MathWorld .
  2. ↑ Van Obel Theorem and Barycentric coordinates . Author - Alexander Bogomolny (eng.)
  3. ↑ HH van Aubel, (1878), “Note the decanting centers of the carres construits sur les côtés d'un polygon quelconque” (Fr.) , Nouvelle Correspondance Mathématique 4 , 1878, pp. 40-44

See also

  • Napoleon's theorem

Links

  • Remarkable points and lines of a triangle
Source - https://ru.wikipedia.org/w/index.php?title=Teorema_Ban-Obel_o_square quad&oldid = 94696407


More articles:

  • Oryol strategic offensive operation "Kutuzov"
  • White Birch
  • 1967 in literature
  • Hiei (1912)
  • Tomuzlovskoye
  • Shitrobovo
  • Shevchenkovo ​​(Novoaleksandrovskiy Village Council)
  • MVA-62
  • Triarchy of the Lost Lovers
  • VL81

All articles

Clever Geek | 2019