Clever Geek Handbook
📜 ⬆️ ⬇️

Euler's theorem (number theory)

Euler's theorem in number theory says:

If aa {\ displaystyle a} a andm {\ displaystyle m} m mutually simple thenaφ(m)≡one(modm) {\ displaystyle a ^ {\ varphi (m)} \ equiv 1 {\ pmod {m}}} a ^ {\ varphi (m)} \ equiv 1 \ pmod m whereφ(m) {\ displaystyle \ varphi (m)} \ varphi (m) - Euler function .

An important consequence of the Euler theorem for the case of a simple module is the small Fermat theorem :

If aa {\ displaystyle a} a not divisible by primep {\ displaystyle p} p thenap-one≡one(modp) {\ displaystyle a ^ {p-1} \ equiv 1 {\ pmod {p}}} a ^ {{p-1}} \ equiv 1 {\ pmod p} .

In turn, the Euler theorem is a consequence of the Lagrange general algebraic theorem applied to the reduced residue system modulom {\ displaystyle m} m .

Content

Evidence

Using number theory

Let bexone,...,xφ(m) {\ displaystyle x_ {1}, \ dots, x _ {\ varphi (m)}}   - all different natural numbers, smallerm {\ displaystyle m}   and mutually simple with it.

Consider all possible works.xia {\ displaystyle x_ {i} a}   for alli {\ displaystyle i}   fromone {\ displaystyle 1}   beforeφ(m) {\ displaystyle \ varphi (m)}   .

Insofar asa {\ displaystyle a}   mutually easy withm {\ displaystyle m}   andxi {\ displaystyle x_ {i}}   mutually easy withm {\ displaystyle m}   , thenxia {\ displaystyle x_ {i} a}   also mutually easy withm {\ displaystyle m}   , i.exia≡xj(modm) {\ displaystyle x_ {i} a \ equiv x_ {j} {\ pmod {m}}}   for somej {\ displaystyle j}   .

Note that all residuesxia {\ displaystyle x_ {i} a}   when divided bym {\ displaystyle m}   are different. Indeed, let it not be so, then there are suchione≠i2 {\ displaystyle i_ {1} \ neq i_ {2}}   , what

xionea≡xi2a(modm){\ displaystyle x_ {i_ {1}} a \ equiv x_ {i_ {2}} a {\ pmod {m}}}  

or

(xione-xi2)a≡0(modm).{\ displaystyle (x_ {i_ {1}} - x_ {i_ {2}}) a \ equiv 0 {\ pmod {m}}.}  

Becausea {\ displaystyle a}   mutually easy withm {\ displaystyle m}   then the last equality is equivalent to

xione-xi2≡0(modm){\ displaystyle x_ {i_ {1}} - x_ {i_ {2}} \ equiv 0 {\ pmod {m}}}   orxione≡xi2(modm) {\ displaystyle x_ {i_ {1}} \ equiv x_ {i_ {2}} {\ pmod {m}}}   .

This is contrary to the fact that the numbersxone,...,xφ(m) {\ displaystyle x_ {1}, \ dots, x _ {\ varphi (m)}}   pairs are distinct in modulusm {\ displaystyle m}   .

Multiply all comparisons of the form.xia≡xj(modm) {\ displaystyle x_ {i} a \ equiv x_ {j} {\ pmod {m}}}   . We get:

xone⋯xφ(m)aφ(m)≡xone⋯xφ(m)(modm){\ displaystyle x_ {1} \ cdots x _ {\ varphi (m)} a ^ {\ varphi (m)} \ equiv x_ {1} \ cdots x _ {\ varphi (m)} {\ pmod {m}}}  

or

xone⋯xφ(m)(aφ(m)-one)≡0(modm){\ displaystyle x_ {1} \ cdots x _ {\ varphi (m)} (a ^ {\ varphi (m)} - 1) \ equiv 0 {\ pmod {m}}}   .

Since the numberxone⋯xφ(m) {\ displaystyle x_ {1} \ cdots x _ {\ varphi (m)}}   mutually easy withm {\ displaystyle m}   the last comparison is equivalent to

aφ(m)-one≡0(modm){\ displaystyle a ^ {\ varphi (m)} - 1 \ equiv 0 {\ pmod {m}}}  

or

aφ(m)≡one(modm).{\ displaystyle a ^ {\ varphi (m)} \ equiv 1 {\ pmod {m}}.}   ■

Using group theory

Consider the multiplicative groupZn∗ {\ displaystyle \ mathbb {Z} _ {n} ^ {*}}   reversible elements of the residue ringZn {\ displaystyle \ mathbb {Z} _ {n}}   . Its order is equal toφ(n) {\ displaystyle \ varphi (n)}   according to the definition of the Euler function . Since the numbera {\ displaystyle a}   mutually easy withn {\ displaystyle n}   corresponding elementa¯ {\ displaystyle {\ overline {a}}}   atZn {\ displaystyle \ mathbb {Z} _ {n}}   is reversible and belongsZn∗ {\ displaystyle \ mathbb {Z} _ {n} ^ {*}}   . Elementa¯∈Zn∗ {\ displaystyle {\ overline {a}} \ in \ mathbb {Z} _ {n} ^ {*}}   generates a cyclic subgroup whose order, according to the Lagrange theorem , dividesφ(n) {\ displaystyle \ varphi (n)}   from herea¯φ(n)=one¯ {\ displaystyle {\ overline {a}} ^ {\ varphi (n)} = {\ overline {1}}}   . ■

See also

  • List of objects named after Leonard Euler

Literature

  • Aierland K., Rosen M. A classic introduction to modern number theory. - M .: Peace, 1987.

Links

  • Topics: Euler's Theorem, Chinese Remainder Theorem , Amir Kamil, CS70, Fall 2003. UC Berkeley (Eng.)
  • RSA and Wagner, CS70, Fall 2003. UC Berkeley (English)
Source - https://ru.wikipedia.org/w/index.php?title=Teorema_Eulera_ (number theory )&oldid = 99093988


More articles:

  • The intelligence activities of the Chinese intelligence services
  • Kuznetsk Bears
  • Syzran Mechanics and Technology College
  • Astronaut Jones
  • LHC @ home
  • Dark Ambient
  • Nunes Dornelles, Adan
  • Full Bye
  • Gummolosary
  • Chickenfoot

All articles

Clever Geek | 2019