Clever Geek Handbook
📜 ⬆️ ⬇️

Approximations of elliptic integrals

Elliptic integrals are not expressed in terms of elementary functions. By definition, elementary functions [1] are functions defined by formulas containing a finite number of algebraic or trigonometric operations performed on an argument, function, and some constants.

Elliptic integrals in the Legendre form of the 1st, 2nd, and 3rd kind [1] , as well as integrals similar to them (with the substitution of plus signs for minus signs and / or with the replacement of cos with sin or vice versa) are precisely represented by the functional series . Such a representation is not an elementary function due to the infinite number of members of this series.

Guided by considerations of achieving the necessary accuracy and taking into account the n initial members of the series and neglecting the remainder, that is, the sum of the remaining members of the series from n + 1 to∞ {\ displaystyle \ infty} \ infty , we obtain an approximation of the (definite or indefinite) elliptic integral in the form of an elementary function. Approximations of elliptic integrals are applied similarly to ordinary integrals .

A certain integral of the first kind can be represented as:

∫φoneφ2dφone-k2sin2⁡φ=one+E(φ-Esin⁡2φfour+...)|φoneφ2;{\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ frac {d \ varphi} {\ sqrt {1-k ^ {2} \ sin ^ {2} \ varphi }}} = {\ sqrt {1 + E}} \ left (\ varphi - {\ frac {E \ sin 2 \ varphi} {4}} + ... \ right) {\ Bigr |} _ {\ varphi _ {1}} ^ {\ varphi _ {2}};} {\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ frac {d \ varphi} {\ sqrt {1-k ^ {2} \ sin ^ {2} \ varphi }}} = {\ sqrt {1 + E}} \ left (\ varphi - {\ frac {E \ sin 2 \ varphi} {4}} + ... \ right) {\ Bigr |} _ {\ varphi _ {1}} ^ {\ varphi _ {2}};}

(ε≈four,2⋅ten-6;με(2)≈330).{\ displaystyle (\ varepsilon \ approx 4 {,} 2 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (2) \ approx 330).} {\ displaystyle (\ varepsilon \ approx 4 {,} 2 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (2) \ approx 330).}

Hereinafter in the formulas the following notation applies:

E=k22-k2;N=h2+h;{\ displaystyle E = {\ frac {k ^ {2}} {2-k ^ {2}}}; ~~~ N = {\ frac {h} {2 + h}};} {\ displaystyle E = {\ frac {k ^ {2}} {2-k ^ {2}}}; ~~~ N = {\ frac {h} {2 + h}};}
ε0=|F(φ)∣φoneφ2-∫φoneφ2f(φ)dφ∫φoneφ2f(φ)dφ|{\ displaystyle \ varepsilon _ {0} = \ left | {\ frac {F (\ varphi) \ mid _ {\ varphi _ {1}} ^ {\ varphi _ {2}} - \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} f (\ varphi) d \ varphi} {\ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} f (\ varphi) d \ varphi}} \ right |} {\ displaystyle \ varepsilon _ {0} = \ left | {\ frac {F (\ varphi) \ mid _ {\ varphi _ {1}} ^ {\ varphi _ {2}} - \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} f (\ varphi) d \ varphi} {\ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} f (\ varphi) d \ varphi}} \ right |} Is the calculated relative error in the calculation of elliptic integrals using the indicated formulas for ellipses similar to the Earth’s meridional (k2=0.006693 {\ displaystyle k ^ {2} = 0 {,} 006693} {\ displaystyle k ^ {2} = 0 {,} 006693} andh=0.006674 {\ displaystyle h = 0 {,} 006674} {\ displaystyle h = 0 {,} 006674} )
ε=ε0max{\ displaystyle \ varepsilon = \ varepsilon _ {0max}} {\ displaystyle \ varepsilon = \ varepsilon _ {0max}} - maximum calculated relative error of the corresponding formula in the range of anglesΔφ=φ2-φone<π2. {\ displaystyle \ Delta ~ \ varphi = \ varphi _ {2} - \ varphi _ {1} <{\ frac {\ pi} {2}}.} {\ displaystyle \ Delta ~ \ varphi = \ varphi _ {2} - \ varphi _ {1} <{\ frac {\ pi} {2}}.}
με(m){\ displaystyle \ mu _ {\ varepsilon} (m)} {\ displaystyle \ mu _ {\ varepsilon} (m)} - a number indicating how many times the maximum calculated relative error of the corresponding formula will decrease, if we addm {\ displaystyle m} m unspecified members in her decomposition formula.

A definite integral of the second kind can be represented as:

∫φoneφ2one-k2sin2⁡φdφ=oneone+E(φ+Esin⁡2φfour+...)|φoneφ2;{\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ sqrt {1-k ^ {2} \ sin ^ {2} \ varphi}} \ d \ varphi = { \ frac {1} {\ sqrt {1 + E}}} \ left (\ varphi + {\ frac {E \ sin 2 \ varphi} {4}} + ... \ right) {\ Bigr |} _ { \ varphi _ {1}} ^ {\ varphi _ {2}};} {\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ sqrt {1-k ^ {2} \ sin ^ {2} \ varphi}} \ d \ varphi = { \ frac {1} {\ sqrt {1 + E}}} \ left (\ varphi + {\ frac {E \ sin 2 \ varphi} {4}} + ... \ right) {\ Bigr |} _ { \ varphi _ {1}} ^ {\ varphi _ {2}};}

(ε≈one,four⋅ten-6;με(2)≈500).{\ displaystyle (\ varepsilon \ approx 1 {,} 4 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (2) \ approx 500).} {\ displaystyle (\ varepsilon \ approx 1 {,} 4 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (2) \ approx 500).}

The length of the ellipse arc with a single semi-major axis:

∫φoneφ2one-k2cos2⁡φdφ=oneone+E(φ-Esin⁡2φfour+...)|φoneφ2;{\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ sqrt {1-k ^ {2} \ cos ^ {2} \ varphi}} \ d \ varphi = { \ frac {1} {\ sqrt {1 + E}}} \ left (\ varphi - {\ frac {E \ sin 2 \ varphi} {4}} + ... \ right) {\ Bigr |} _ { \ varphi _ {1}} ^ {\ varphi _ {2}};} {\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ sqrt {1-k ^ {2} \ cos ^ {2} \ varphi}} \ d \ varphi = { \ frac {1} {\ sqrt {1 + E}}} \ left (\ varphi - {\ frac {E \ sin 2 \ varphi} {4}} + ... \ right) {\ Bigr |} _ { \ varphi _ {1}} ^ {\ varphi _ {2}};}

(ε≈one,four⋅ten-6;με(2)≈500).{\ displaystyle (\ varepsilon \ approx 1 {,} 4 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (2) \ approx 500).} {\ displaystyle (\ varepsilon \ approx 1 {,} 4 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (2) \ approx 500).}

A certain integral of the 3rd kind can be written in the form:

∫φoneφ2dφ(one+h⋅sin2⁡φ)one-k2sin2⁡φ={\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ frac {d \ varphi} {(1 + h \ cdot \ sin ^ {2} \ varphi) {\ sqrt {1-k ^ {2} \ sin ^ {2} \ varphi}}}} =} {\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ frac {d \ varphi} {(1 + h \ cdot \ sin ^ {2} \ varphi) {\ sqrt {1-k ^ {2} \ sin ^ {2} \ varphi}}}} =}
=one+E2+h⋅(2+hone+harctg⁡(one+h⋅tg⁡φ)(one-E2N+...)+φ⋅(EN+...)+...)|φoneφ2;{\ displaystyle = {\ frac {\ sqrt {1 + E}} {2 + h}} \ cdot \ left ({\ frac {2 + h} {\ sqrt {1 + h}}} \ operatorname {arctg} \ left ({\ sqrt {1 + h}} \ cdot \ operatorname {tg} \ varphi \ right) \ left (1 - {\ frac {E} {2N}} + ... \ right) + \ varphi \ cdot \ left ({\ frac {E} {N}} + ... \ right) + ... \ right) {\ Bigl |} _ {\ varphi _ {1}} ^ {\ varphi _ {2} };} {\ displaystyle = {\ frac {\ sqrt {1 + E}} {2 + h}} \ cdot \ left ({\ frac {2 + h} {\ sqrt {1 + h}}} \ operatorname {arctg} \ left ({\ sqrt {1 + h}} \ cdot \ operatorname {tg} \ varphi \ right) \ left (1 - {\ frac {E} {2N}} + ... \ right) + \ varphi \ cdot \ left ({\ frac {E} {N}} + ... \ right) + ... \ right) {\ Bigl |} _ {\ varphi _ {1}} ^ {\ varphi _ {2} };}
(ε≈four,2⋅ten-6;με(3)≈330).{\ displaystyle (\ varepsilon \ approx 4 {,} 2 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (3) \ approx 330).} {\ displaystyle (\ varepsilon \ approx 4 {,} 2 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (3) \ approx 330).}

Example

To calculate the length of the arc of the geodesic line on the surface of the terrestrial spheroid [2] , the calculation of a certain integral of the form is required:

∫φoneφ2dφ(one+h⋅cos2⁡φ)one-k2sin2⁡φ={\ displaystyle \ int _ {\ varphi _ {1}} ^ {\ varphi _ {2}} {\ frac {d \ varphi} {(1 + h \ cdot \ cos ^ {2} \ varphi) {\ sqrt {1-k ^ {2} \ sin ^ {2} \ varphi}}}} =}  
=one+E2+h⋅(2+hone+harctg(tgφone+h)(one+E2N+...)-φ(EN+...)+...)|φoneφ2;{\ displaystyle = {\ frac {\ sqrt {1 + E}} {2 + h}} \ cdot \ left ({\ frac {2 + h} {\ sqrt {1 + h}}} {\ text {arctg }} \ left ({\ frac {{\ text {tg}} \ \ varphi} {\ sqrt {1 + h}}} \ right) \ left (1 + {\ frac {E} {2N}} +. .. \ right) - \ varphi \ left ({\ frac {E} {N}} + ... \ right) + ... \ right) {\ Bigr |} _ {\ varphi _ {1}} ^ {\ varphi _ {2}};}  
(ε≈four,2⋅ten-6;με(3)≈330).{\ displaystyle (\ varepsilon \ approx 4 {,} 2 \ cdot 10 ^ {- 6}; ~~ \ mu _ {\ varepsilon} (3) \ approx 330).}  


See also

  • Numerical integration

Notes

  1. ↑ 1 2 Bronstein I.N., Semendyaev K.A. Handbook of Mathematics. - M.: Science, 1964.
  2. ↑ Matsevich M.I. Navigation calculations of geodesic routes. - M.: Information Fund FSUE "VNTIC", No. 72200700019, 2007.
Source - https://ru.wikipedia.org/w/index.php?title=Elliptic_Integral approximations&oldid = 94940226


More articles:

  • GDC Europe
  • GP2 Asia Pilot List
  • British Society of Gastroenterology
  • Hyundai Heavy Industries
  • Gofrey
  • Romanov, Boris Aleksandrovich (historian)
  • Car wreck (film)
  • Nemiga Street
  • Ulan-Ude-Vostochny (airfield)
  • K-181

All articles

Clever Geek | 2019