Clever Geek Handbook
📜 ⬆️ ⬇️

Cantor-Bernstein theorem

Arrows indicate images.

The Cantor – Bernstein theorem (in the English literature, the Cantor – Bernstein – Schröder theorem ) states that if there are injective mappingsf:A→B {\ displaystyle f: A \ to B} f: A \ to B andg:B→A {\ displaystyle g: B \ to A} {\ displaystyle g: B \ to A} between setsA {\ displaystyle A} A andB {\ displaystyle B} B , then there is a one-to-one mappingh:A→B {\ displaystyle h: A \ to B} {\ displaystyle h: A \ to B} . In other words, that cardinality setsA {\ displaystyle A} A andB {\ displaystyle B} B match up:

|A|=|B|.{\ displaystyle | A | = | B |.} {\ displaystyle | A | = | B |.}

In other words, the theorem states the following:

Ofa⩽b {\ displaystyle {\ mathfrak {a}} \ leqslant {\ mathfrak {b}}} {\ displaystyle {\ mathfrak {a}} \ leqslant {\ mathfrak {b}}} andb⩽a {\ displaystyle {\ mathfrak {b}} \ leqslant {\ mathfrak {a}}} {\ displaystyle {\ mathfrak {b}} \ leqslant {\ mathfrak {a}}} follows thata=b, {\ displaystyle {\ mathfrak {a}} = {\ mathfrak {b}},} {\ displaystyle {\ mathfrak {a}} = {\ mathfrak {b}},} Wherea,b {\ displaystyle {\ mathfrak {a}}, {\ mathfrak {b}}} {\ displaystyle {\ mathfrak {a}}, {\ mathfrak {b}}} - cardinal numbers .

Content

History

The theorem is named after Georg Cantor , Felix Bernstein and Ernst Schröder .

The initial proof used the axiom of choice , but this axiom is not necessary to prove this theorem.

Ernst Schroeder was the first to formulate a theorem, but published an incorrect proof. Independently, this theorem was formulated by Cantor. Cantor’s student Felix Bernstein published a dissertation containing completely correct proof.

Proof

Let be

C0=A∖g(B),{\ displaystyle C_ {0} = A \ setminus g (B),}  

and

Cn+one=g(f(Cn)){\ displaystyle C_ {n + 1} = g (f (C_ {n})) \ quad}   atn⩾0 {\ displaystyle n \ geqslant 0}  

and

C=⋃n=0∞Cn.{\ displaystyle C = \ bigcup _ {n = 0} ^ {\ infty} C_ {n}.}  

Then, for anyx∈A {\ displaystyle x \ in A}   put

h(x)={f(x)ifx∈Cg-one(x)ifx∉C{\ displaystyle h (x) = \ left \ {{\ begin {matrix} f (x) & \, \, {\ mbox {if}} x \ in C \\ g ^ {- 1} (x) & {\ mbox {if}} x \ not \ in C \ end {matrix}} \ right.}  

If ax {\ displaystyle x}   does not lie inC {\ displaystyle C}   thenx {\ displaystyle x}   should be ing(B) {\ displaystyle g (B)}   (image of the setB {\ displaystyle B}   under the action of the mappingg {\ displaystyle g}   ) And then there isg-one(x) {\ displaystyle g ^ {- 1} (x)}   , andh {\ displaystyle h}   display.

It remains to verify thath:A→B {\ displaystyle h: A \ to B}   - bijection.

Let us verify that h is surjection.

It is necessary to prove that∀y∈B∃x∈A:h(x)=y {\ displaystyle \ forall y \ in B \ exists x \ in A: h (x) = y}  
∀y∈B{\ displaystyle \ forall y \ in B}  

I{\ displaystyle \ mathrm {I} \ \ \}   If ay∈f(C) {\ displaystyle y \ in f (C)}   then∃x∈Cf(x)=y {\ displaystyle \ exists x \ in Cf (x) = y}   . Thenh(x)=f(x)=y {\ displaystyle h (x) = f (x) = y}  

IIy∉f(C){\ displaystyle \ mathrm {II} \; y \ notin f (C)}  
Let bex=g(y) {\ displaystyle x = g (y)}   . Supposex∈C {\ displaystyle x \ in C}   . Thenx∈Cn {\ displaystyle x \ in C_ {n}}   atn>0 {\ displaystyle n> 0}   meansx∈g(f(Cn-one)) {\ displaystyle x \ in g (f (C_ {n-1}))}   ,
⇒∃c∈Cn-onex=g(f(c))x=g(y)}⇒{\ displaystyle \ Rightarrow \ exists c \ in C_ {n-1} {\ begin {matrix} x = g (f (c)) \\ x = g (y) \ end {matrix}} {\ Bigg \} } \ Rightarrow}   , becauseg {\ displaystyle g}   - injection theny=f(c)∈f(C) {\ displaystyle y = f (c) \ in f (C)}   , which contradicts the assumption.
Meansx∉C {\ displaystyle x \ notin C}   . Thenh(x)=g-one(x)=g-one(g(y))=y {\ displaystyle h (x) = g ^ {- 1} (x) = g ^ {- 1} (g (y)) = y}  

We verify that h is an injection.

It is necessary to prove thath(xone)=h(x2)⇒xone=x2 {\ displaystyle h (x_ {1}) = h (x_ {2}) \ Rightarrow x_ {1} = x_ {2}}  

Ixone,x2∈C{\ displaystyle \ mathrm {I} \; x_ {1}, x_ {2} \ in C}  
f(xone)=f(x2)⇒xone=x2{\ displaystyle f (x_ {1}) = f (x_ {2}) \ Rightarrow x_ {1} = x_ {2}}   (f {\ displaystyle f}   - injection)

IIxone,x2∉C{\ displaystyle \ mathrm {II} \; x_ {1}, x_ {2} \ notin C}  
g-one(xone)=g-one(x2)⇒xone=g(g-one(xone))=g(g-one(x2))=x2{\ displaystyle g ^ {- 1} (x_ {1}) = g ^ {- 1} (x_ {2}) \ Rightarrow x_ {1} = g (g ^ {- 1} (x_ {1})) = g (g ^ {- 1} (x_ {2})) = x_ {2}}  

IIIxone∈C,x2∉C{\ displaystyle \ mathrm {III} \; x_ {1} \ in C, x_ {2} \ notin C}  
h(xone)=f(xone),h(x2)=g-one(x2){\ displaystyle h (x_ {1}) = f (x_ {1}), h (x_ {2}) = g ^ {- 1} (x_ {2})}  
h(xone)=h(x2){\ displaystyle h (x_ {1}) = h (x_ {2})}  
x2=g(h(x2))=g(h(xone))=g(f(xone))∈C{\ displaystyle x_ {2} = g (h (x_ {2})) = g (h (x_ {1})) = g (f (x_ {1})) \ in C}   So this case is impossible.

Note

Display Definitionh {\ displaystyle h}   unconstructive above, i.e. there is no algorithm for determining in a finite number of steps whether some element liesx {\ displaystyle x}   manyA {\ displaystyle A}   in the multitudeC {\ displaystyle C}   or not. Although for some special cases such an algorithm exists.

See also

  • Ernst Schroeder
  • Georg Cantor
  • Felix Bernstein
  • Set theory
  • Cardinal number

Literature

  • N.K. Vereshchagin, A. Shen. Lectures on mathematical logic and theory of algorithms. Part 1. The beginnings of set theory.
  • Ershov Yu. L., Palyutin EA. Mathematical logic: textbook. - 3rd, stereotype. ed. - St. Petersburg: "Doe", 2004. - 336 p.
Source - https://ru.wikipedia.org/w/index.php?title=Cantor__Bernstein theorem&oldid = 98615274


More articles:

  • Bugova, Leah Isaakovna
  • Untouchable (Girls Aloud Song)
  • Atlanta (song)
  • Flag of Belorechensky district
  • Slaughter couple: Starsky and Hutch
  • Flag of the Yeisk Strengthening Rural Settlement
  • Taylor, Hound Dog
  • Adrian III
  • Bruce Peninsula
  • DOS Shell

All articles

Clever Geek | 2019