Clever Geek Handbook
📜 ⬆️ ⬇️

Arithmetic function

Arithmetic function - a function defined on the set of natural numbersN {\ displaystyle \ mathbb {N}} \ mathbb {N} and taking values ​​in a set of complex numbersC {\ displaystyle \ mathbb {C}} \ mathbb {C} .

Definition

As follows from the definition, an arithmetic function is any function

f:N→C{\ displaystyle f \ colon \ mathbb {N} \ to \ mathbb {C}} {\displaystyle f\colon \mathbb {N} \to \mathbb {C} }

The name arithmetic function is due to the fact that many functions are known in number theoryf(n) {\ displaystyle f (n)} f(n) natural argument expressing certain arithmetic propertiesn {\ displaystyle n} n . Therefore, informally speaking, an arithmetic function is understood to mean a functionf(n) {\ displaystyle f (n)} f(n) , which "expresses some arithmetic property" of a natural numbern {\ displaystyle n} n (see examples of arithmetic functions below ).

Many arithmetic functions considered in number theory are actually integer-valued.

Operations and Related Concepts

  • The sum of the arithmetic functionf {\ displaystyle f} f call functionF:[0,+∞)→C {\ displaystyle F: [0, + \ infty) \ to \ mathbb {C}} {\displaystyle F:[0,+\infty )\to \mathbb {C} } defined as
F(x)=Σn≤xf(n).{\ displaystyle F (x) = \ sum _ {n \ leq x} f (n).} {\displaystyle F(x)=\sum _{n\leq x}f(n).}

This operation is a “discrete analogue” of the indefinite integral; at the same time, although the initial function was determined only onN {\ displaystyle \ mathbb {N}} \mathbb {N} , its sum turns out to be convenient to be considered defined on the entire positive semiaxis (while it is, of course, piecewise constant).

  • The Dirichlet convolution of two arithmetic functions f and g is the arithmetic function h defined by the rule
h(n)=Σd|nf(d)g(n/d).{\ displaystyle h (n) = \ sum _ {d | n} f (d) g (n / d).} {\displaystyle h(n)=\sum _{d|n}f(d)g(n/d).}
  • The arithmetic function f can be associated with its "generating function" - the Dirichlet series
Φf(s)=Σnf(n)n-s.{\ displaystyle \ Phi _ {f} (s) = \ sum _ {n} f (n) n ^ {- s}.} {\displaystyle \Phi _{f}(s)=\sum _{n}f(n)n^{-s}.}

In this Dirichlet convolution of two arithmetic functions, the product of their generating functions corresponds.

  • Pointwise multiplication by the logarithm,
f↦f′,f′(n)=f(n)⋅ln⁡n,{\ displaystyle f \ mapsto f ', \ quad f' (n) = f (n) \ cdot \ ln n,} {\displaystyle f\mapsto f',\quad f'(n)=f(n)\cdot \ln n,}

is a differentiation of the algebra of arithmetic functions: with respect to convolution, it satisfies the Leibniz rule,

(f∗g)′=f′∗g+f∗g′.{\ displaystyle (f * g) '= f' * g + f * g '.}  

The transition to a generating function turns this operation into ordinary differentiation.

Known Arithmetic Functions

Number of dividers

Arithmetic functionτ:N→N {\ displaystyle \ tau \ colon \ mathbb {N} \ to \ mathbb {N}}   defined as the number of positive divisors of a natural numbern {\ displaystyle n}   :

τ(n)=Σd|none{\ displaystyle \ tau (n) = \ sum _ {d | n} 1}  

If am {\ displaystyle m}   andn {\ displaystyle n}   are mutually simple , then each divisor of the productmn {\ displaystyle mn}   can be uniquely represented as a product of divisorsm {\ displaystyle m}   andn {\ displaystyle n}   , and vice versa, each such product is a divisormn {\ displaystyle mn}   . It follows that the functionτ {\ displaystyle \ tau}   multiplicative :

τ(mn)=τ(m)τ(n){\ displaystyle \ tau (mn) = \ tau (m) \ tau (n)}  

If an=∏i=onerpisi {\ displaystyle n = \ prod _ {i = 1} ^ {r} p_ {i} ^ {s_ {i}}}   - canonical decomposition of the naturaln {\ displaystyle n}   , due to the multiplicativity

τ(n)=τ(ponesone)τ(p2s2)...τ(prsr){\ displaystyle \ tau (n) = \ tau (p_ {1} ^ {s_ {1}}) \ tau (p_ {2} ^ {s_ {2}}) \ ldots \ tau (p_ {r} ^ { s_ {r}})}  

Since the positive divisors of the numberpisi {\ displaystyle p_ {i} ^ {s_ {i}}}   aresi+one {\ displaystyle s_ {i} +1}   numbersone,pi,...,pisi {\ displaystyle 1, p_ {i}, \ ldots, p_ {i} ^ {s_ {i}}}   then

τ(n)=(sone+one)(s2+one)...(sr+one){\ displaystyle \ tau (n) = (s_ {1} +1) (s_ {2} +1) \ ldots (s_ {r} +1)}  

The number of divisors of a large integer n grows on average asln⁡n {\ displaystyle \ ln n}   [1] . More precisely - see the Dirichlet formula .

Sum of dividers

Functionσ:N→N {\ displaystyle \ sigma \ colon \ mathbb {N} \ to \ mathbb {N}}   defined as the sum of the divisors of a natural numbern {\ displaystyle n}   :

σ(n)=Σd|nd{\ displaystyle \ sigma (n) = \ sum _ {d | n} d}  

Summarizing Functionsτ(n) {\ displaystyle \ tau (n)}   andσ(n) {\ displaystyle \ sigma (n)}   for arbitrary, generally complexk {\ displaystyle k}   can be determinedσk(n) {\ displaystyle \ sigma _ {k} (n)}   - amountk {\ displaystyle k}   degrees of positive divisors of a natural numbern {\ displaystyle n}   :

σk(n)=Σd|ndk{\ displaystyle \ sigma _ {k} (n) = \ sum _ {d | n} d ^ {k}}  

Using Iverson notation , you can write

σk(n)=Σddk[d|n]{\ displaystyle \ sigma _ {k} (n) = \ sum _ {d} d ^ {k} [\, d | n \,]}  

Functionσk {\ displaystyle \ sigma _ {k}}   multiplicative:

m⊥n⇒σk(mn)=σk(m)σk(n){\ displaystyle m \ perp n \ Rightarrow ~ \ sigma _ {k} (mn) = \ sigma _ {k} (m) \ sigma _ {k} (n)}  

If an=∏i=onerpisi {\ displaystyle n = \ prod _ {i = 1} ^ {r} p_ {i} ^ {s_ {i}}}   - canonical decomposition of the naturaln {\ displaystyle n}   then

σk(n)=∏i=onerpi(si+one)k-onepik-one{\ displaystyle \ sigma _ {k} (n) = \ prod _ {i = 1} ^ {r} {\ frac {p_ {i} ^ {(s_ {i} +1) k} -1} {p_ {i} ^ {k} -1}}}  

The sum of the divisors of n grows on average as a linear function of cn, where the constant c is found by Euler and isc=ζ(2)=π2/6 {\ displaystyle c = \ zeta (2) = \ pi ^ {2} / 6}   [1] .

Euler Function

Euler functionφ(n) {\ displaystyle \ varphi (n)}   , or totiant , is defined as the number of positive integers not exceedingn {\ displaystyle n}   which are mutually simple withn {\ displaystyle n}   .

Using Iverson's notation , you can write:

φ(n)=Σone≤k≤n[k⊥n]{\ displaystyle \ varphi (n) = \ sum _ {1 \ leq k \ leq n} [k \ perp n]}  

The Euler function is multiplicative:

m⊥n⇒φ(mn)=φ(m)φ(n){\ displaystyle m \ perp n \ Rightarrow ~ \ varphi (mn) = \ varphi (m) \ varphi (n)}  

Explicitly, the value of the Euler function is expressed by the formula:

φ(n)=n(one-onepone)(one-onep2)...(one-onepr){\ displaystyle \ varphi (n) = n \ left (1 - {\ frac {1} {p_ {1}}} \ right) \ left (1 - {\ frac {1} {p_ {2}}} \ right) \ dots \ left (1 - {\ frac {1} {p_ {r}}} \ right)}  

Wherepone,p2,...,pr {\ displaystyle p_ {1}, p_ {2}, \ ldots, p_ {r}}   - various simple dividersn {\ displaystyle n}   .

Mobius function

Mobius functionμ(n) {\ displaystyle \ mu (n)}   can be defined as an arithmetic function that satisfies the following relation:

Σd|nμ(d)={one,n=one0,n>one{\ displaystyle \ sum _ {d | n} \ mu (d) = {\ begin {cases} 1, & n = 1 \\ 0, & n> 1 \ end {cases}}}  

That is, the sum of the values ​​of the Mobius function for all divisors of a positive integern {\ displaystyle n}   equal to zero ifn>one {\ displaystyle n> 1}   , and equalsone {\ displaystyle 1}   , if an=one {\ displaystyle n = 1}   .

It can be shown that only one function satisfies this equation, and it can be explicitly defined by the following formula:

μ(n)={(-one)r,n=ponep2...pr0,p2|none,n=one{\ displaystyle \ mu (n) = {\ begin {cases} (- 1) ^ {r}, & n = p_ {1} p_ {2} \ ldots p_ {r} \\ 0, & p ^ {2} | n \\ 1, & n = 1 \ end {cases}}}  

Herepi {\ displaystyle p_ {i}}   - various prime numbers,p {\ displaystyle p}   - Prime number. In other words, the Mobius functionμ(n) {\ displaystyle \ mu (n)}   is equal to0 {\ displaystyle 0}   , if an {\ displaystyle n}   not free from squares (i.e. divided by the square of a prime), and is equal to±one {\ displaystyle \ pm 1}   otherwise (plus or minus is selected depending on the parity of the number of prime divisorsn {\ displaystyle n}   ).

The Mobius function is a multiplicative function . The importance of the Mobius function in number theory is associated with the Mobius formula for inversion .

Notes

  1. ↑ 1 2 V. And Arnold. Dynamics, statistics and projective geometry of Galois fields. - M .: ICMMO, 2005 .-- S. 70. - 72 p.

See also

  • Multiplicative function

Literature

  • Vinogradov I. M. Fundamentals of number theory . - M.-L .: GITTL, 1952. - 180 p.
  • Nesterenko Yu. V. Number theory: a textbook for students. higher studies. institutions. - M .: Publishing Center "Academy", 2008. - 272 p. - ISBN 978-5-7695-4646-4 .
  • Chandrasekharan K. Introduction to Analytic Number Theory = Introduction to Analytic Number Theory. - M .: "The World", 1974. - 188 p.
Source - https://ru.wikipedia.org/w/index.php?title=Arithmetic_function&oldid=97086641


More articles:

  • Theory of Net Expectations
  • Cooling 535-536 years
  • Najdorf, Miguel
  • Kachmarek, Jane
  • Vedlozero (village)
  • Fabre, Saturnin
  • Yagov Oleg Vasilievich
  • Lae, Erling
  • Aves
  • New Anti-Capitalist Party

All articles

Clever Geek | 2019