Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Four-stroke engine

Work four-stroke engine in the section. The numbers indicate cycles

A four-stroke engine is a piston internal combustion engine in which the working process in each of the cylinders takes place in two revolutions of the crankshaft , that is, in four strokes of the piston (stroke). Since the middle of the XX century - the most common type of piston internal combustion engine, especially in engines of medium and high power.

Work Procedure

The duty cycle of a four-stroke engine occurs in four cycles, each of which constitutes one stroke of the piston between the dead points, and the engine passes the following phases:

  • Inlet Lasts from 0 to 180 Β° rotation of the crank. When the inlet piston moves down from the top dead center, the inlet valve is open. In the cylinder, a vacuum is formed, due to which a fresh charge is sucked into it. In the presence of a supercharger, the mixture is injected into the cylinder under pressure.
  • Compression Tact . 180-360 Β° rotation of the crank. The piston moves to TDC , while the charge is compressed by the piston to the pressure of the compression ratio. Due to compression, a higher specific power is achieved than an engine operating at atmospheric pressure could have (such as a Lenoir engine ), due to the fact that the entire charge of the working mixture is contained in a small volume. In addition, increasing the compression ratio increases the efficiency of the engine. In Otto engines of any design a combustible mixture is compressed, in diesels - clean air.

At the end of the compression stroke, charge is ignited in Otto engines or the start of fuel injection in Diesel engines.

  • Work stroke 360-540 Β° crank - piston movement in the direction of the lower dead point under the pressure of hot gases transmitted by the piston through the connecting rod to the crankshaft. In this case, the Otto engine undergoes the process of isochoric expansion; in the diesel engine, due to the continuing combustion of the working mixture, the heat supply continues as long as the injection of a portion of fuel lasts. Therefore, combustion in a diesel engine provides a process close to adiabatic , the expansion occurs at the same pressure.
  • Release 540-720 Β° rotation of the crank - cleaning the cylinder from the spent mixture. The exhaust valve is open, the piston moves towards the upper dead center, displacing exhaust gases.

In real engines, the timing phases are selected in such a way that the inertia of the gas flows and the geometry of the intake and exhaust paths are taken into account. As a rule, the beginning of the intake ahead of TDC from 15 to 25 Β°, the end of the intake lags by about the same distance from the BDC, since the inertia of the gas flow provides better filling of the cylinder. The exhaust valve is ahead of the NMT of the working stroke by 40 - 60 Β°, while the pressure of the burnt gases to the NMT drops and the back pressure on the piston during exhaust is lower, which increases efficiency. The closing of the exhaust valve is also attributed to the TDC intake for more complete removal of exhaust gases.

Since the combustion process and flame front propagation in Otto engines require a certain time, depending on the engine operation mode, and the maximum pressure, due to geometry considerations of the crank drive mechanism, is desirable to have from 40 to 45 Β° from TDC of the beginning of the working stroke, ignition is carried out ahead of time - from 2 - 8 Β° at idle up to 25 - 30 Β° at full load.

The working process of a diesel engine differs from that described above in that the charge in the combustion chamber is clean air heated from compression to the ignition temperature. Some time before TDC, called the initiation time , liquid fuel starts to be injected into the combustion chamber, sprayed to droplets, each of which undergoes initiation , that is, it is heated, evaporating from the surface, during evaporation around each of the droplets a combustible mixture is formed and ignites in hot air . The initiation time for each diesel engine is stable, depends on the design features and changes only with its wear, therefore, unlike the ignition timing, the injection timing in the diesel engine is set once and for all when it is designed and manufactured. Since the mixture in the entire volume of the combustion chamber in a diesel engine is not formed, and the nozzle flame takes up a small volume of the chamber, the amount of air for each volume of injected fuel should be excessive, otherwise the combustion process does not end to end, and the exhaust gases contain a large amount of unburned carbon in the form of soot. The burning itself lasts as long as the injection of this particular batch of fuel lasts - from a few degrees after TDC at idle to 45-50 Β° at full power. In high-power diesels, the cylinder can be equipped with several injectors.

Main features of a four-stroke engine

  • Gas exchange in the cylinder is almost completely provided by the movement of the working piston;
  • A separate gas distribution mechanism is used to switch the cylinder cavity to the inlet and the exhaust;
  • Each phase of gas exchange is performed during a separate half-turn of the crankshaft;
  • The drive of gas distribution systems, ignition and fuel injection should rotate at a frequency twice as low as the engine speed. For this purpose, gear gearboxes and chain or belt drives can be used.

History

Otto cycle

 
Otto idealized cycle, shown in coordinates pressure (P) and volume (V): intake stroke (A) , which is an isobaric expansion; it is followed by a compression stroke (B) , which is an adiabatic process . This is followed by fuel combustion, which is an isochoric process , and adiabatic expansion, which characterize the stroke of the working stroke (C) . The cycle ends with an isochoric process and isobaric compression, which characterize
release cycle (D) . TDC - upper dead point; BDC - lower dead point

The four-stroke engine was first patented by Alfon de Roche In 1861. Prior to that, around 1854-1857, two Italians (Eugenio Barsanti and Felice Matozzi) invented an engine that, according to available information, could be very similar to a four-stroke engine, but that patent was lost.

The first person to build the first practically used four-stroke engine was the German engineer Nikolaus Otto . Therefore, a four-stroke cycle is known as an Otto cycle , and a four-stroke engine using spark plugs is called an Otto engine .

Otto's ideal cycle consists of adiabatic compression, the message of heat at a constant volume, adiabatic expansion, and the return of heat at a constant volume. In the practical four-cycle Otto cycle, there are also isobaric compression (exhaust) and isobaric expansion (inlet), which are usually not considered, since in the idealized process they play no role either in conveying heat to the working gas or in performing gas work.

This is a video about the work of the engine Otto. (2 min 16 sec, 320 Γ— 240, 340 kbps)

Gas distribution mechanism

The attributive unit of the four-stroke engine, controls the gas exchange when changing cycles, providing alternate connection of the cylinder cavity to the intake and exhaust manifolds.

Gas distribution control can be carried out:

MECHANICAL:
- a distributing cam shaft or shaft with valves;
- cylindrical sleeve spools moving reciprocating or rotating in the cylinder head;
MICROPROCESSOR. In this case, the valve drive is carried out directly by powerful high-speed electromagnets (BMW) or using a hydraulic actuator (FIAT).

In the first case, the valves are controlled by a camshaft rotating half the slower than the crankshaft. The camshaft has several cams , each of which controls one intake or exhaust valve. From camshafts often include additional engine service devices - oil, fuel pumps, distributor of ignition, fuel pump, sometimes - mechanical superchargers, etc.

Different engines use one or more camshafts located near the crankshaft, above a row of cylinders or even above each row of valves. The drive of the camshafts is carried out from the crankshaft either by the distribution gears, or by a lamellar-roller chain, or by a toothed belt. In some old structures, rollers with bevel gears (B-2) were used. In any case, the shafts are synchronized with speeds of 1: 2.

In any case, the shaft located next to the crankshaft is called the lower one , in the head above or next to the valves - the upper one . The valves on the location relative to the combustion chamber can also be upper - located above the bottom of the piston, or lower - located next to the cylinders on the side. Bottom valves are driven from the lower shaft through short glass-like pushers. The upper valves are driven from the lower shaft, as a rule, by a sucker-like mechanism, from the upper either through rockers (rocker arms) or through glass-like pushers. Many engines use hydraulic tappets that automatically select the gaps in the valve pairs and make the timing distribution mechanism unattended.

The valve is a rod with a plate made of heat-resistant materials. The valve stem reciprocates in the guide sleeve, the plate with a conical sealing strap rests on the valve seat, also made of heat-resistant materials. Both the seat and the guide bushing are the contact surfaces through which the valve is cooled. This position is especially important for exhaust valves that constantly work in hot gas flows (and if the ignition or injection timing is incorrect, they are in a flame flow) and need an intensive heat sink. Therefore, to improve cooling, a cavity with heat-conducting material β€” with sodium and copper β€” can be located inside the valve stem. And the contacting surfaces themselves should be smooth and have the minimum possible clearances. Many valves have turning mechanisms that provide forced rotation around the longitudinal axis during operation.

Opening the valve provides the corresponding cam, closing - either the return valve spring / springs, or a special desmodromic mechanism (Daimler-Benz), which allows, due to the absence of springs, to achieve very high speeds of valve movement and, accordingly, significantly increase engine speed distribution mechanism. The fact is that the weaker the valve spring, the slower the return of the valve to the seat. Even when operating at relatively low speeds, weak springs allow the valves to β€œhang” and come into contact with the pistons (VAZ engines without an internal row of valve springs - at 5500-6000 rpm). The stronger the valve springs, the greater the stress that the timing parts experience, and the more high-quality oil should be used to lubricate it. The desmodromic mechanism allows the valves to be moved with a speed that is limited only by their moment of inertia, that is, substantially higher than the speeds that can be achieved for valves in real engines.

Electromagnetic or electro-hydraulic control with a microprocessor, above that, allows you to easily adjust the valve timing of the engine, achieving the most favorable distribution characteristics in each mode.

Some early engine models (Harley-Davidson, Peugeot) had inlet valves with weak springs that ensured β€œautomatic” opening of the valve after the start of intake under vacuum under the piston.

For the timing correction in the timing with camshafts, various kinds of differentiating mechanisms are used, their design depends on the engine layout and the timing (which largely determines the layout of the entire engine).

Lubrication and Cooling Systems

The work of the internal combustion engine is accompanied by the release of a significant amount of heat due to the high temperatures of the working gases and significant contact stresses in the friction parts. Therefore, to ensure the operation of the engine, the parts forming friction pairs must be cooled and lubricated, and the products of mechanical wear should be flushed out of the gaps between them. Lubricating oil, in addition to providing an oil wedge in the gaps, removes a significant amount of heat from the loaded rubbing surfaces. For cooling cylinder liners and engine head elements, an additional forced cooling system is used, which can be liquid and air.

The engine lubrication system consists of a container with oil; as such, the sump is often used - in a system with an oil sump or a separate oil tank - in a system with a dry sump . From the tank, the oil is sucked in by an oil pump , gear pump or, less commonly, a rotary pump , and through the channels comes under pressure to friction parts. In a system with an oil sump, cylinder liners and some minor parts are lubricated by spraying; dry sump systems require special lubricators to lubricate and cool these same parts. In engines of medium and high power, the lubrication system includes elements of oil cooling of the pistons in the form of coils poured into the bottoms or special nozzles pouring over the bottom of the piston from the crankcase. As a rule, the lubrication system contains one or more filters for cleaning oil from wear products of friction pairs and tarring the oil itself. Filters are used either with a cardboard curtain with a certain degree of porosity, or centrifugal. For oil cooling, air-oil radiators or water-oil heat exchangers are often used.

In the simplest case, the air cooling system is simply a massive finning of cylinders and heads. The incoming air flow from the outside and the oil from the inside cool the engine. If it is impossible to provide a heat sink with the oncoming flow, a fan with air ducts is included in the system. Along with such indisputable advantages as simplicity of the engine and relatively high survivability in adverse conditions, as well as relatively less weight, air cooling has serious disadvantages:

- a large amount of air blowing through the engine carries a large amount of dust, which accumulates on the fins, especially when oil leaks, which are unavoidable in operation, as a result, the cooling efficiency decreases sharply;

- low heat capacity of the air makes it blow through its engine significant volumes, which requires a significant power take-off for the cooling fan;

- the shape of the engine parts is poorly matched to the conditions of good airflow around it, and therefore it is very difficult to achieve uniform cooling of the engine components Due to the difference in operating temperatures in the individual structural elements, large thermal stresses are possible, which reduces the durability of the structure.

Therefore, air cooling is used infrequently in an internal combustion engine and, as a rule, either on low-cost structures or in cases where the engine runs under special conditions. So, on the front end conveyor of the ZAZ-967 , an air-cooled engine MeMZ-968 is used, the absence of a water jacket, sleeves and a radiator increases the survivability of the conveyor in a battlefield environment.

Liquid cooling has several advantages and is used on ICE in most cases. Benefits:

- the high heat capacity of the liquid contributes to the rapid and efficient removal of heat from the zones of heat generation;

- a much more uniform heat distribution in the structural elements of the engine, which significantly reduces thermal stresses;

- the use of liquid cooling allows you to quickly and efficiently regulate the flow of heat in the cooling system and, therefore, faster and much more evenly than in the case of air cooling, warm up the engine to operating temperature range;

- liquid cooling allows you to increase both the linear dimensions of the engine parts and its thermal stress due to the high efficiency of heat dissipation; поэтому всС срСдниС ΠΈ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ТидкостноС ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠŸΠ”ΠŸ-Π΄Π²ΡƒΡ…Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π·ΠΎΠ½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΎΡ‡Π½Ρ‹Ρ… ΠΎΠΊΠΎΠ½ гильз охлаТдаСтся ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΎΡ‡Π½Ρ‹ΠΌ Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΌ ΠΈΠ· сообраТСний ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΊΠΈ;

β€” ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΠ° Π²ΠΎΠ΄ΠΎ-Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π²ΠΎΠ΄ΠΎ-водяного Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠ° позволяСт максимально эффСктивно ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒ Ρ‚Π΅ΠΏΠ»ΠΎ двигатСля Π² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду.

НСдостатки водяного охлаТдСния:

β€” ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ вСса ΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ конструкции двигатСля ΠΈΠ·-Π·Π° наличия водяной Ρ€ΡƒΠ±Π°ΡˆΠΊΠΈ;

β€” Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠ°/Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π°;

β€” сниТСниС надёТности Π°Π³Ρ€Π΅Π³Π°Ρ‚Π° ΠΈΠ·-Π·Π° наличия стыков Ρ€ΡƒΠΊΠ°Π²ΠΎΠ², шлангов ΠΈ ΠΏΠ°Ρ‚Ρ€ΡƒΠ±ΠΊΠΎΠ² с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌΠΈ Ρ‚Π΅Ρ‡Π°ΠΌΠΈ Тидкости;

β€” ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ двигатСля ΠΏΡ€ΠΈ ΠΏΠΎΡ‚Π΅Ρ€Π΅ хотя Π±Ρ‹ части ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ Тидкости.

Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ систСмы Тидкостного охлаТдСния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π² качСствС тСплоноситСля ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ„Ρ€ΠΈΠ·Ρ‹ , Π·Π°ΠΌΠ΅Ρ€Π·Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΈ содСрТащиС ΠΏΠ°ΠΊΠ΅Ρ‚Ρ‹ присадок Ρ€Π°Π·Π½ΠΎΠ³ΠΎ назначСния β€” ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ, ΠΌΠΎΡŽΡ‰ΠΈΠ΅, ΡΠΌΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅, Π°Π½Ρ‚ΠΈΠΏΠ΅Π½Π½Ρ‹Π΅, Π° ΠΈΠ½ΠΎΠ³Π΄Π° ΠΈ Π³Π΅Ρ€ΠΌΠ΅Ρ‚ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ мСста Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ‚Π΅Ρ‡Π΅ΠΉ. Π‘ Ρ†Π΅Π»ΡŒΡŽ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ ΠšΠŸΠ” двигатСля систСмы Π³Π΅Ρ€ΠΌΠ΅Ρ‚ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚, ΠΏΡ€ΠΈ этом ΠΏΠΎΠ²Ρ‹ΡˆΠ°Ρ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ΠΊ области кипСния Π²ΠΎΠ΄Ρ‹. Π’Π°ΠΊΠΈΠ΅ систСмы охлаТдСния Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ ΠΏΡ€ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π²Ρ‹ΡˆΠ΅ атмосфСрного, ΠΈΡ… элСмСнты рассчитаны Π½Π° ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ давлСния. Π­Ρ‚ΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»Π΅Π²Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ„Ρ€ΠΈΠ·Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ высокий коэффициСнт ΠΎΠ±ΡŠΡ‘ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² Ρ‚Π°ΠΊΠΈΡ… систСмах часто ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π±Π°Ρ‡ΠΊΠΈ ΠΈΠ»ΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Ρ‹ с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Π²Π΅Ρ€Ρ…Π½ΠΈΠΌΠΈ Π±Π°Ρ‡ΠΊΠ°ΠΌΠΈ.

Π‘ Ρ†Π΅Π»ΡŒΡŽ стабилизации Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ для ускорСния ΠΏΡ€ΠΎΠ³Ρ€Π΅Π²Π° двигатСля Π² систСмы охлаТдСния ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ тСрмостаты . Для Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠ³ΠΎ охлаТдСния тСрмостат β€” ΡΠΈΠ»ΡŒΡ„ΠΎΠ½ , Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΉ Ρ†Π΅Ρ€Π΅Π·ΠΈΠ½ΠΎΠΌ ΠΈΠ»ΠΈ этиловым спиртом Π² сочСтании с ΠΎΠ±ΠΎΠΉΠΌΠΎΠΉ ΠΈ систСмой Ρ€Ρ‹Ρ‡Π°Π³ΠΎΠ², ΠΏΠΎΠ²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… заслонки, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΈ распрСдСлСниС Π²ΠΎΠ·Π΄ΡƒΡˆΠ½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ². Π’ систСмах Тидкостного охлаТдСния Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ тСрмоэлСмСнт осущСствляСт ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ систСмы ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ², Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ Π»ΠΈΠ±ΠΎ Π² Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€, Π»ΠΈΠ±ΠΎ Π² ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠ°Π½Π°Π», ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡΡ†ΠΈΡŽ Π½Π°Π³Ρ€Π΅Π²Π°Π΅ΠΌΠΎΠΉ Тидкости ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Ρ€Π΅Π²Π°Π½ΠΈΠ΅ двигатСля.

Π Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€ ΠΈΠ»ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊ охлаТдСния ΠΈΠΌΠ΅Π΅Ρ‚ вСнтилятор, ΠΏΡ€ΠΎΠ΄ΡƒΠ²Π°ΡŽΡ‰ΠΈΠΉ Ρ‡Π΅Ρ€Π΅Π· Π½Π΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊ атмосфСрного Π²ΠΎΠ·Π΄ΡƒΡ…Π°, с гидростатичСским ΠΈΠ»ΠΈ элСктричСским ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΎΠΌ.

Баланс энСргии

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ ΠžΡ‚Ρ‚ΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ тСрмичСский ΠšΠŸΠ” ΠΎΠΊΠΎΠ»ΠΎ 40 %, Ρ‡Ρ‚ΠΎ с мСханичСскими потСрями Π΄Π°Π΅Ρ‚ фактичСский ΠšΠŸΠ” ΠΎΡ‚ 25 Π΄ΠΎ 33%.

Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½Ρ‹ΠΉ ΠšΠŸΠ” для удовлСтворСния высоких экологичСских Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ.

ΠšΠŸΠ” Π”Π’Π‘ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ соврСмСнных систСм процСссорного управлСния Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎΠΏΠΎΠ΄Π°Ρ‡Π΅ΠΉ, Π·Π°ΠΆΠΈΠ³Π°Π½ΠΈΠ΅ΠΌ ΠΈ Ρ„Π°Π·Π°ΠΌΠΈ газораспрСдСлСния. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ сТатия соврСмСнных Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΠΌΠ΅Π΅Ρ‚ значСния, Π±Π»ΠΈΠ·ΠΊΠΈΠ΅ ΠΊ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌ (спорный ΠΌΠΎΠΌΠ΅Π½Ρ‚, см. Π¦ΠΈΠΊΠ» ΠœΠΈΠ»Π»Π΅Ρ€Π°).

Π€Π°ΠΊΡ‚ΠΎΡ€Ρ‹, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ двигатСля

 
Π§Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ»
1=вСрхняя мёртвая Ρ‚ΠΎΡ‡ΠΊΠ°
2=ниТняя мёртвая Ρ‚ΠΎΡ‡ΠΊΠ°
A: Ρ‚Π°ΠΊΡ‚ впуска
B: Ρ‚Π°ΠΊΡ‚ сТатия
C: Ρ‚Π°ΠΊΡ‚ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ Ρ…ΠΎΠ΄Π°
D: Ρ‚Π°ΠΊΡ‚ выпуска

ΠœΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ€ΡˆΠ½Π΅Π²ΠΎΠ³ΠΎ двигатСля зависит ΠΎΡ‚ ΠΎΠ±ΡŠΡ‘ΠΌΠ° Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΎΠ², ΠΎΠ±ΡŠΡ‘ΠΌΠ½Ρ‹ΠΌ ΠšΠŸΠ” , ΠΏΠΎΡ‚Π΅Ρ€ΡŒ энСргии β€” газодинамичСских, Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… ΠΈ мСханичСских, стСпСни сТатия Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎ-Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ смСси, содСрТания кислорода Π² Π²ΠΎΠ·Π΄ΡƒΡ…Π΅ ΠΈ частоты вращСния. ΠœΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ двигатСля зависит Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ пропускной способности Ρ‚Π°ΠΊΡ‚ΠΎΠ² всасывания ΠΈ Π²Ρ‹Ρ…Π»ΠΎΠΏΠ°, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΎΡ‚ ΠΈΡ… ΠΏΡ€ΠΎΡ…ΠΎΠ΄Π½Ρ‹Ρ… сСчСний, Π΄Π»ΠΈΠ½Ρ‹ ΠΈ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ², большС впускных. Π­Ρ‚ΠΎ справСдливо для Π»ΡŽΠ±Ρ‹Ρ… ΠΏΠΎΡ€ΡˆΠ½Π΅Π²Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ. Максимальная ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Π”Π’Π‘ достигаСтся ΠΏΡ€ΠΈ Π½Π°ΠΈΠ²Ρ‹ΡΡˆΠ΅ΠΌ Π½Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΎΠ². Частота вращСния ΠΊΠΎΠ»Π΅Π½Π²Π°Π»Π° Π² ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌ счётС ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π° ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ свойствами смазки. Клапана, ΠΏΠΎΡ€ΡˆΠ½ΠΈ ΠΈ ΠΊΠΎΠ»Π΅Π½Ρ‡Π°Ρ‚Ρ‹Π΅ Π²Π°Π»Ρ‹ ΠΈΡΠΏΡ‹Ρ‚Ρ‹Π²Π°ΡŽΡ‚ больши́С динамичСскиС Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ. На высоких ΠΎΠ±ΠΎΡ€ΠΎΡ‚Π°Ρ… двигатСля ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ физичСскиС поврСТдСния ΠΏΠΎΡ€ΡˆΠ½Π΅Π²Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ† , мСханичСский ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ² с ΠΏΠΎΡ€ΡˆΠ½ΡΠΌΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ двигатСля. ΠŸΠΎΡ€ΡˆΠ½Π΅Π²Ρ‹Π΅ ΠΊΠΎΠ»ΡŒΡ†Π° Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ ΠΊΠΎΠ»Π΅Π±Π»ΡŽΡ‚ΡΡ Π² ΠΊΠ°Π½Π°Π²ΠΊΠ°Ρ… ΠΏΠΎΡ€ΡˆΠ½Π΅ΠΉ. Π­Ρ‚ΠΈ колСбания ΡƒΡ…ΡƒΠ΄ΡˆΠ°ΡŽΡ‚ ΡƒΠΏΠ»ΠΎΡ‚Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡ€ΡˆΠ½Π΅ΠΌ ΠΈ гильзой, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΡ‚Π΅Ρ€Π΅ компрСссии, ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ мощности ΠΈ ΠšΠŸΠ” Π² Ρ†Π΅Π»ΠΎΠΌ. Если ΠΊΠΎΠ»Π΅Π½Π²Π°Π» вращаСтся слишком быстро, ΠΊΠ»Π°ΠΏΠ°Π½Π½Ρ‹Π΅ ΠΏΡ€ΡƒΠΆΠΈΠ½Ρ‹ Π½Π΅ ΡƒΡΠΏΠ΅Π²Π°ΡŽΡ‚ достаточно быстро Π·Π°ΠΊΡ€Ρ‹Π²Π°Ρ‚ΡŒ ΠΊΠ»Π°ΠΏΠ°Π½Π°. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρƒ ΠΏΠΎΡ€ΡˆΠ½Π΅ΠΉ с ΠΊΠ»Π°ΠΏΠ°Π½Π°ΠΌΠΈ ΠΈ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½Ρ‹Π΅ поврСТдСния, поэтому Π½Π° скоростных спортивных двигатСлях ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ² Π±Π΅Π· Π²ΠΎΠ·Π²Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΡƒΠΆΠΈΠ½. Π’Π°ΠΊ, Β«Π”Π°ΠΉΠΌΠ»Π΅Ρ€-Π‘Π΅Π½Ρ†Β» сСрийно выпускаСт ΠΌΠΎΡ‚ΠΎΡ€Ρ‹ с дСсмодромным ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ»Π°ΠΏΠ°Π½Π°ΠΌΠΈ (с Π΄Π²ΠΎΠΉΠ½Ρ‹ΠΌΠΈ ΠΊΡƒΠ»Π°Ρ‡ΠΊΠ°ΠΌΠΈ, ΠΎΠ΄ΠΈΠ½ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΠΊΠ»Π°ΠΏΠ°Π½, Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡ€ΠΈΠΆΠΈΠΌΠ°Π΅Ρ‚ Π΅Π³ΠΎ ΠΊ сСдлу), Π‘ΠœΠ’ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ элСктромагнитноС ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ»Π°ΠΏΠ°Π½Π°ΠΌΠΈ. На высоких скоростях ΡƒΡ…ΡƒΠ΄ΡˆΠ°ΡŽΡ‚ΡΡ условия Ρ€Π°Π±ΠΎΡ‚Ρ‹ смазки Π²ΠΎ всСх ΠΏΠ°Ρ€Π°Ρ… трСния.

Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎ с потСрями Π½Π° ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π²ΠΎΠ·Π²Ρ€Π°Ρ‚Π½ΠΎ-ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ двиТущихся элСмСнтов Π¦ΠŸΠ“, это ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ€ΡˆΠ½Π΅ΠΉ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° сСрийных Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ 10 ΠΌ/с.

Application

Π§Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ Π±Π΅Π½Π·ΠΈΠ½ΠΎΠ²Ρ‹ΠΌΠΈ , Ρ‚Π°ΠΊ ΠΈ Π΄ΠΈΠ·Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ . Они находят самоС ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² качСствС ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ Π½Π° стационарных ΠΈ транспортных энСргоустановках.

Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ‚Π΅Ρ… случаях, ΠΊΠΎΠ³Π΄Π° имССтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ ΠΈΠ»ΠΈ ΠΌΠ΅Π½Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ² Π²Π°Π»Π° со снимаСмой ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ крутящим ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° это ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Ρ€ΠΎΠ»ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΌΠ°ΡˆΠΈΠ½Ρ‹. НапримСр, Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ, Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹ΠΉ элСктрогСнСратором, Π² ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π»ΡŽΠ±ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‡ΡƒΡŽ характСристику ΠΈ согласуСтся с Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΌΡƒ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρƒ ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ, ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌΠΈ для Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π°. ИспользованиС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ Π²ΠΎΠΎΠ±Ρ‰Π΅ Π΄Π΅Π»Π°Π΅Ρ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΉ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π±ΠΎΠ»Π΅Π΅ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΊ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°ΠΌ Π² самых ΡˆΠΈΡ€ΠΎΠΊΠΈΡ… ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ…. Они ΠΆΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π² Ρ‚Π΅Ρ… случаях, ΠΊΠΎΠ³Π΄Π° установка Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ врСмя Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π²Π½Π΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ Ρ€Π΅ΠΆΠΈΠΌΠ° β€” благодаря Π±ΠΎΠ»Π΅Π΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎΠΉ Π³Π°Π·ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Π° Π² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… со снятиСм частичной мощности оказываСтся Π±ΠΎΠ»Π΅Π΅ устойчивой.

When working on the shaft in a given rev range, especially low-speed (propeller shaft), it is preferable to use two-stroke engines, as having more favorable mass-power characteristics at low revs.

Notes

Links

  • Ricardo G.R. High-speed internal combustion engines. - M .: GNTI Engineering literature, 1960.
Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ β€” https://ru.wikipedia.org/w/index.php?title=Π§Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΉ_Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ&oldid=98992617


More articles:

  • Jamie Bamber
  • Irinform
  • Usacheva Street
  • Spienne
  • Russian-Turkish War (1806-1812)
  • Micronesia
  • Huaristi, Hon
  • Hobscheid
  • Mamer
  • Rambrush

All articles

Clever Geek | 2019