Clever Geek Handbook
📜 ⬆️ ⬇️

Mittag-Leffler theorem

The Mittag-Leffler theorem on the decomposition of a meromorphic function is one of the main theorems of the theory of analytic functions, which gives an analogue of the decomposition of a rational function into simple fractions for meromorphic functions.

Theorem

Let meromorphic functionf(z) {\ displaystyle f (z)}   has pointsz=ak,|aone|⩽|a2|⩽...⩽|ak|⩽... {\ displaystyle z = a_ {k}, | a_ {1} | \ leqslant | a_ {2} | \ leqslant \ ldots \ leqslant | a_ {k} | \ leqslant \ ldots}   poles with main partsgk(onez-ak)=Gk(z) {\ displaystyle g_ {k} ({\ frac {1} {z-a_ {k}}}) = G_ {k} (z)}   let it gohk(p)=Gk(0)+Gkone(0)z+...+Gk(p)(0)p!zp {\ displaystyle h_ {k} ^ {(p)} = G_ {k} (0) + G_ {k} ^ {1} (0) z + \ ldots + {\ frac {G_ {k} ^ {(p) } (0)} {p!}} Z ^ {p}}   there will be segments of Taylor decompositionsgk(onez-ak) {\ displaystyle g_ {k} \ left ({\ frac {1} {z-a_ {k}}} \ right)}   by degreesz {\ displaystyle z}   . Then there is such a sequence of integerspk {\ displaystyle p_ {k}}   and such an entire functionf0(z) {\ displaystyle f_ {0} (z)}   that for everyonez≠ak {\ displaystyle z \ neq a_ {k}}   decomposition takes placef(z)=f0(z)+∑k=one∞{gk(onez-ak)-hkpk(z)} {\ displaystyle f (z) = f_ {0} (z) + \ sum _ {k = 1} ^ {\ infty} \ left \ {g_ {k} \ left ({\ frac {1} {z-a_ {k}}} \ right) -h_ {k} ^ {p_ {k}} (z) \ right \}}   absolutely and uniformly converging in any finite circle|z|⩽A {\ displaystyle | z | \ leqslant A}   .

Corollary

Any meromorphic functionf(z) {\ displaystyle f (z)}   representable as the sum of a seriesf(z)=h(z)+∑n=0∞(gn(z)-Pn(z)) {\ displaystyle f (z) = h (z) + \ sum _ {n = 0} ^ {\ infty} \ left (g_ {n} (z) -P_ {n} (z) \ right)}   whereh {\ displaystyle h}   - whole functiongn {\ displaystyle g_ {n}}   - the main parts of the Laurent decompositions at the polesf(z) {\ displaystyle f (z)}   numbered in ascending order of their modules, andPn {\ displaystyle P_ {n}}   - some polynomials.

Literature

  • Fuchs B.A. , Shabat B.V. Functions of a complex variable and some of their applications. - M .: Nauka, 1964 .-- S. 313
Source - https://ru.wikipedia.org/w/index.php?title=Mittag- Leffler_ theorem&oldid = 86764057


More articles:

  • Bourges (Women's Basketball Club)
  • Maple (Bliznyukovsky district)
  • Tunnel between Helsinki and Tallinn
  • Vyshneve (Bliznyukovsky district)
  • Fortune ibn Kasi
  • Babayan, Aghvan Nagapetovich
  • Aviation Alliance
  • Iceland population
  • Far North
  • Attack

All articles

Clever Geek | 2019