Clever Geek Handbook
📜 ⬆️ ⬇️

Borsuk – Ulam Theorem

The Borsuk – Ulam theorem is a classical algebraic topology theorem that states that every continuous function that mapsn {\ displaystyle n} n -dimensional sphere inn {\ displaystyle n} n -dimensional Euclidean space for a pair of diametrically opposite points has a common meaning.

Informally, the statement is known as the “temperature and pressure theorem”: at any time on the surface of the Earth (S2 {\ displaystyle \ mathbb {S} ^ {2}} {\ displaystyle \ mathbb {S} ^ {2}} ) there are antipodal points with equal temperature and equal pressure [1] ; the one-dimensional case is usually illustrated by two diametrically opposite points of the equator (Sone {\ displaystyle \ mathbb {S} ^ {1}} {\ displaystyle \ mathbb {S} ^ {1}} ) with equal temperature.

Wording

For continuous functionf:Sn→Rn {\ displaystyle f: \ mathbb {S} ^ {n} \ to \ mathbb {R} ^ {n}} {\displaystyle f:\mathbb {S} ^{n}\to \mathbb {R} ^{n}} whereSn {\ displaystyle \ mathbb {S} ^ {n}} {\mathbb  {S}}^{n} - sphere in(n+one) {\ displaystyle (n + 1)} (n+1) -dimensional Euclidean space , there are two diametrically opposite pointsa,-a∈Sn {\ displaystyle a, -a \ in \ mathbb {S} ^ {n}} {\displaystyle a,-a\in \mathbb {S} ^{n}} , whatf(a)=f(-a) {\ displaystyle f (a) = f (-a)} {\displaystyle f(a)=f(-a)} .

History

The statement was first encountered by Lazar Aronovich Lyusternik and Lev Genrikhovich Shnirelman in 1930 [2] [3] . The first evidence was published in 1933 by Karol Borsuk , in this article he claims that the wording belongs to Stanislav Ulam .

Variations and generalizations

  • An equivalent statement is a general zero theorem : every odd (with respect to the diametric opposite) continuous functiong:Sn→Rn {\ displaystyle g: \ mathbb {S} ^ {n} \ to \ mathbb {R} ^ {n}} {\displaystyle g:\mathbb {S} ^{n}\to \mathbb {R} ^{n}} ofn {\ displaystyle n} n -dimensional sphere inn {\ displaystyle n} n -dimensional Euclidean space at one of the pointsa∈Sn {\ displaystyle a \ in \ mathbb {S} ^ {n}} {\displaystyle a\in \mathbb {S} ^{n}} vanishes:g(a)=0 {\ displaystyle g (a) = 0} {\displaystyle g(a)=0} . Equivalence is established by introducing a continuous functionf:Sn→Rn {\ displaystyle f: \ mathbb {S} ^ {n} \ to \ mathbb {R} ^ {n}} {\displaystyle f:\mathbb {S} ^{n}\to \mathbb {R} ^{n}} odd functiong(x)=f(x)-f(-x) {\ displaystyle g (x) = f (x) -f (-x)} {\displaystyle g(x)=f(x)-f(-x)} . In the one-dimensional case, the general zero theorem follows directly from the intermediate value theorem ; the general proof uses the (algebraic-topological version), or is deduced from ( combinatorial version; in this case, Tucker's lemma is considered to be a combinatorial analogue of the Borsuk – Ulam theorem).
  • Abram Ilyich Fet proved this statement not only for the ratio of antipodes, but also for arbitrary involutionn {\ displaystyle n} n -dimensional sphere. Namely, for any continuous involutiona↦a∗ {\ displaystyle a \ mapsto a ^ {*}} {\displaystyle a\mapsto a^{*}} spheresSn {\ displaystyle \ mathbb {S} ^ {n}} {\mathbb  {S}}^{n} and any continuous functionf:Sn→Rn {\ displaystyle f: \ mathbb {S} ^ {n} \ to \ mathbb {R} ^ {n}} {\displaystyle f:\mathbb {S} ^{n}\to \mathbb {R} ^{n}} there is such a pointa∈Sn {\ displaystyle a \ in \ mathbb {S} ^ {n}} {\displaystyle a\in \mathbb {S} ^{n}} , whatf(a)=f(a∗) {\ displaystyle f (a) = f (a ^ {*})} {\displaystyle f(a)=f(a^{*})} .

Notes

  1. ↑ O. Ya. Viro, O.A. Ivanov, N. Yu. Netsvetaev, V.M. Kharlamov. Elementary topology
  2. ↑ L.A. Lyusternik, L.G. Shnirelman. Topological methods in variational problems // Proceedings of the Institute of Mathematics and Mechanics at Moscow State University (special issue). - 1930.
  3. ↑ Jiří Matoušek. Using the Borsuk – Ulam theorem. - Berlin: Springer Verlag, 2003 .-- ISBN 3-540-00362-2 . - DOI : 10.1007 / 978-3-540-76649-0 .

Literature

  • K. Borsuk Drei Sätze über die n -dimensionale euklidische Sphäre - Fund. Math., 20 (1933), p. 177-190.
  • Borsuk-Ulam theorem implies the Brouwer fixed point theorem
  • M. Crane , A. Nudelman . The Borsuk – Ulam theorem, or something about the weather, about a trained horse, and about two-dimensional fields // Quantum . - 1983. - No. 8 . - S. 20-25 .
Source - https://ru.wikipedia.org/w/index.php?title=Borsuk_ theorem___Ulama &oldid = 94141793


More articles:

  • Komarov, Nikolay Vasilievich
  • Polymorphism of a Unique Event
  • Red Breast
  • Lensky district (Yakutia)
  • Transferrin
  • Source Input Format
  • CheckInstall
  • Znamenskaya Church (Novosibirsk)
  • Sweet Dream
  • Yalovets, Henry

All articles

Clever Geek | 2019