Clever Geek Handbook
📜 ⬆️ ⬇️

Transcendental function

A transcendental function is an analytic function that is not algebraic . The simplest examples of transcendental functions are exponential function , trigonometric functions , logarithmic function .

If transcendental functions are considered as functions of a complex variable, then their characteristic feature is the presence of at least one feature different from poles and branch points of finite order.

For example,ez {\ displaystyle e ^ {z}} e ^ {z} ;cos⁡z {\ displaystyle \ cos z} {\ displaystyle \ cos z} andsin⁡z {\ displaystyle \ sin z} {\ displaystyle \ sin z} have a significant singular pointz=∞ {\ displaystyle z = \ infty} z = \ infty (Where∞ {\ displaystyle \ infty} \ infty denotes the vertex of the Riemann sphere - an infinitely distant point of the complex plane),ln⁡z {\ displaystyle \ ln z} {\ displaystyle \ ln z} - branch points of infinite order forz=0 {\ displaystyle z = 0} {\ displaystyle z = 0} andz=∞ {\ displaystyle z = \ infty} z = \ infty .

The foundations of the general theory of transcendental functions are given by the theory of analytic functions. Special transcendental functions are studied in the relevant disciplines (the theory of hypergeometric , elliptic , Bessel functions, etc.).

See also

  • Algebraic Function
  • Analytic function
  • Transcendental equation
Source - https://ru.wikipedia.org/w/index.php?title=Transcendent_function&oldid=92693787


More articles:

  • Daichi
  • Wozniak, Alexandra
  • Droperidol
  • Alarcon, Pedro Antonio de
  • Coat of arms of the Aladyins
  • Cameroon at the 1976 Summer Olympics
  • Rouge Rouge
  • Pine plantations (reserve)
  • Dobrush District
  • Ipsilanti, Alexander Konstantinovich

All articles

Clever Geek | 2019