Clever Geek Handbook
📜 ⬆️ ⬇️

Morse Lemma

Morse's lemma is a statement describing the behavior of a smooth or analytic real function in a neighborhood of a non-degenerate critical point . One of the simple but most important results of Morse theory ; named for the developer of the theory and the American mathematician Marston Morse, who established this result in 1925 .

Content

Wording

Let bef:Rn→R {\ displaystyle f: \ mathbb {R} ^ {n} \ to \ mathbb {R}}   - class functionCr+2 {\ displaystyle C ^ {r + 2}}   wherer≥one {\ displaystyle r \ geq 1}   having a point0∈Rn {\ displaystyle 0 \ in \ mathbb {R} ^ {n}}   its non-degenerate critical point, that is, at this point the differential∂f∂x {\ displaystyle {\ frac {\ partial f} {\ partial x}}}   vanishes, and the Hessian|∂2f∂x2| {\ displaystyle {\ Bigl |} {\ frac {\ partial ^ {2} f} {\ partial x ^ {2}}} {\ Bigr |}}   different from zero. Then in some neighborhoodU {\ displaystyle U}   points0 {\ displaystyle 0}   there is such a systemCr {\ displaystyle C ^ {r}}   -smooth local coordinates (map)(xone,x2,...,xn) {\ displaystyle (x_ {1}, x_ {2}, \ ldots, x_ {n})}   starting at point0 {\ displaystyle 0}   that for everyonex∈U {\ displaystyle x \ in U}   equality holds [1]

f(x)=f(0)-xone2-⋯-xk2+xk+one2+⋯+xn2{\ displaystyle f (x) = f (0) -x_ {1} ^ {2} - \ dots -x_ {k} ^ {2} + x_ {k + 1} ^ {2} + \ dots + x_ { n} ^ {2}}   .

Moreover, the numberk {\ displaystyle k}   defined by the signature of the quadratic part of the germf {\ displaystyle f}   at the point0 {\ displaystyle 0}   is called the critical point index0 {\ displaystyle 0}   this function is a special case of the general concept of the Morse index .

Variations and generalizations

Tujron's Theorem

In the vicinity of the critical point0 {\ displaystyle 0}   finite multiplicityμ {\ displaystyle \ mu}   there is a coordinate system in which a smooth functionf(x) {\ displaystyle f (x)}   has the form of a polynomialPμ+one(x) {\ displaystyle P _ {\ mu +1} (x)}   degrees ofμ+one {\ displaystyle \ mu +1}   (asPμ+one(x) {\ displaystyle P _ {\ mu +1} (x)}   can take the taylor polynomial functionf(x) {\ displaystyle f (x)}   at the point0 {\ displaystyle 0}   in original coordinates). In the case of a non-degenerate critical point, the multiplicityμ=one {\ displaystyle \ mu = 1}   , and the Toujron theorem turns into Morse's lemma [1] [2] .

Morse lemma with parameters

Let bef(xone,...,xn,yone,...,ym):Rn+m→R {\ displaystyle f (x_ {1}, \ ldots, x_ {n}, y_ {1}, \ ldots, y_ {m}): \ mathbb {R} ^ {n + m} \ to \ mathbb {R} }   - smooth function with origin0 {\ displaystyle 0}   its critical point, non-degenerate in variablesxone,...,xn {\ displaystyle x_ {1}, \ ldots, x_ {n}}   . Then in a neighborhood of the point0 {\ displaystyle 0}   there are smooth coordinates in which

f(x,y)=αonexone2+⋯+αnxn2+f0(yone,...,ym),αi=±one,{\ displaystyle f (x, y) = \ alpha _ {1} x_ {1} ^ {2} + \ cdots + \ alpha _ {n} x_ {n} ^ {2} \, + \, f_ {0 } (y_ {1}, \ ldots, y_ {m}), \ quad \ alpha _ {i} = \ pm 1,}  

Wheref0 {\ displaystyle f_ {0}}   Is some smooth function. This statement allows us to reduce the study of the singularity (critical point) of the function ofn+m {\ displaystyle n + m}   variables to the study of the features of a function of a smaller number of variables (namely, of the number of variables equal to the corank of the Hessian of the original function) [1] .

The proof of this statement can be carried out by induction on n using the Hadamard lemma or in another way [1] .

Notes

  1. ↑ 1 2 3 4 Arnold V.I., Varchenko A.N., Huseyn-Zade S.M. Features of differentiable mappings.
  2. ↑ Samoilenko A. M. On the equivalence of a smooth function to a Taylor polynomial in a neighborhood of a critical point of finite type, - Funkts. Analysis and its adj., 2: 4 (1968), pp. 63-69.

Literature

  • Arnold V.I., Varchenko A.N., Huseyn-Zade S.M. Features of differentiable mappings.
  • Zorich V.A. Mathematical analysis.
  • Hirsch M. Differential topology.
  • Takens F. A note on sufficiency of jets. - Inventiones Mathematicae, vol. 13, no 3, 1971, pp. 225-231.
  • Samoilenko A. M. On the equivalence of a smooth function to a Taylor polynomial in a neighborhood of a critical point of finite type, - Funkts. Analysis and its adj., 2: 4 (1968), pp. 63-69.
  • Darinsky B. M., Sapronov Yu. I., Tsarev S. L. Bifurcation of extremals of Fredholm functionals, - CMFD, 12, M., 2004, p. 3-140.
Source - https://ru.wikipedia.org/w/index.php?title=Morsa Lemma&oldid = 89366731


More articles:

  • Burlyaev, Nikolai Petrovich
  • Lisp Machine
  • Zimarron
  • Canadian-US Border
  • Pestilence
  • Trafalgar
  • Bergi (Riga)
  • Tibidabo Funicular
  • Magni M 19 Shark
  • Eutresis

All articles

Clever Geek | 2019